Chemical Reviews

Volume 82, **Number 4 August** 1982

Compounds Containing the S=S Bond

GERALD W. KUTNEY'

Lkpartmnr of Chemishy, *Erlndab College. Univwslfy* **of** *Toronto. Mlssluaupa. Onfario LSL* 1C6, Canada

KENNETH TURNBULL'

Lkpaflmnr of Chemlshy, Wright **State** *Universlfy, Dayion.* Ohio *45435*

Received June 24, 198 I *(Revked Manuscript Received April* **30.** 1962)

Contents

'Present address: Chemicals Research Lab., C-I-L **Inc..** 2101 Hadwen, Mississauga, Ontario **L5K 2L3,** Canada.

Gerald Kutney was born in Montreal, Canada, in 1953. He received his B.Sc. from the University of Toronto in 1976 and will be receivlng his **W.D.** from **me same** university in **1982.** His graduate work has been associated with the synthesis of novel organosulfur compounds and sulfur-containing natural products. This work was conducted under **the** supervision of **1.** W. J. Stili of **Erindale** College at the University of Toronto. Currently he is working for the Chemical Research Laboratory of C-I-L Inc. as a research chemist in the pulp and paper group.

Kenneth Turnbull was born in 1951, in Edinburgh, Scotland. He received his B.Sc. and Ph.D. (in 1976) degrees from Heriot-Watt University, Edinburgh. After 2 years as a Postdoctoral Research Associate at the University of Toronto, he joined the chemistry facuily at Cninneii College (Iowa) Since **1981 ne** has been at Wright State University where he is at present an Assistant Professor. His research interests are in the areas of organosulfur and mesoionic chemistry.

I. Introduction

Compounds containing the *S=S* bond have long been proposed **as** intermediates in organic synthesis and, on occasion, as stable entities (see sections VI and VIII). However, **as** yet, no definitive evidence for the existence of stable thiosulfoxides (R₂S=S, R = \geq C) has been forthcoming, although in recent years a number of stable compounds containing the S=S moiety have been prepared (cf. (thiosulfinyl)amines (N=S=S, section VIII), thiono sulfites (I, section VI), and disulfur

difluoride (FSSF \rightleftharpoons F₂S=S, section IV). The inherent instability of the sulfur-sulfur double bond, in contrast to the $S=N$ and $S=O$ bonds of sulfimides and sulfoxides, may arise from the poor $p-d\pi$ overlap involved therein.¹

The intriguing problems inherent in the preparation of characterizable thiosulfoxides (and other S=S containing species) have stimulated much research in recent years. Aspects of the controversy relating to the assignment of linear or branched chain structures for di- and polysulfides have been briefly reviewed,² but no comprehensive survey has been hitherto available. It is the intention in this review to outline preparative routes and chemical and physical properties of known stable S=S containing compounds and to present evidence both for and against thiosulfoxide intermediacy. Inorganic sulfur branched chain species, except for particularly interesting or illustrative examples, are not included.

Research reports appearing after 1970 have been emphasized with literature coverage extending through December 1981.

II. Background

A. Acycllc Compounds

1. Mustard Gas and Derivatives

The deadly poison, $bis(β\text{-chloroethvl})$ sulfide (mus- $\text{tan} \cdot \text{gas}^{3}$ (1), was originally prepared by the reaction of bis $(\beta$ -hydroxyethyl) sulfide with hydrochloric acid.⁴ HOCH CH2CH2CH2CH2

$$
HOCH2CH2SCH2CH2OH + HCl \rightarrow ClCH2CH2CH2CH2CH2Cl
$$

ClCH₂CH₂CH₂CH₂Cl
 $x = 1-7$, respectively

The lack of the above reagents in the first World War prompted the Allies to develop an alternative industrial synthesis of 1. This, the Levinstein process, consisted synthesis of 1. This, the Levinstein process, consisted
of the reaction of ethylene with disulfur dichloride.⁴
CH₂=CH₂ + S₂Cl₂ → 1

$$
CH_2=CH_2+ S_2Cl_2\rightarrow 1
$$

The formation of the sulfide 1, instead of the expected disulfide **2,** stimulated the belief that disulfur dichloride existed as an equilibrium mixture, 4

$$
Cl-S-S-Cl \rightleftharpoons Cl-S(=S)-Cl \rightleftharpoons ClSCI + S
$$

Thus, $bis(β{\text{-}chloroethvl})$ thiosulfoxide $(2b)$ was proposed4 as a possible intermediate in the Levinstein S

S

process. The facile loss of a sulfur atom from the disulfide 2 upon heating led Green to postulate⁵ that 2 existed in the branched form **2b.** However, Mann,

$$
\begin{array}{ccc}\n\text{CICH}_{2} \text{CH}_{2} \longrightarrow \text{S} & \longrightarrow \text{CH}_{2} \text{CH}_{2} \text{Cl} & \longrightarrow & \text{CICH}_{2} \text{CH}_{2} \text{CH}_{2} \text{CH}_{2} \text{Cl} \\
\text{CICH}_{2} \text{CH}_{2} \longrightarrow \text{S} & \longrightarrow & \text{CHA}_{2} \text{CH}_{2} \text{CH}_{2} \text{CH}_{2} \text{Cl} & \longrightarrow & \text{CICH}_{2} \text{CH}_{2} \text{CH}_{2} \text{Cl} \\
\text{2a} & & & & 2\mathbf{b}\n\end{array}
$$

Pope, and Vernon determined that this "product" was actually a mixture of the sulfide 1 and sulfur. 6 Later bis(β -chloroethyl) disulfide was shown, by Bennett⁷ and Pernot,⁸ to have the nonbranched structure 2a.

 $\text{Bis}(\beta\text{-chloroethyl})$ tri- and pentasulfides $(3 \text{ and } 5)$ were also isolated from the reaction of ethylene with disulfur dichloride? Pemot reported that the trisulfide **3** had the branched structure $3b$,⁸ while earlier, Mann, Pope, and Vernon proposed the linear structure **3a.6**

I/ CICH~CH~-S-S-S-CH~CHZCI ClCH2CH2-S-S-CH2CH2CI 3a 3b

In 1946, Fuson and co-workers concluded that the trisulfide **3** existed in the linear form **3a** since reaction with chlorine yielded the sulfenyl chlorides **8** and 9.9

$$
3 + \text{Cl}_2 \rightarrow \text{CICH}_2\text{CH}_2\text{SCI} + \text{CICH}_2\text{CH}_2\text{--S--Cl}
$$

8

A preliminary X-ray crystallographic examination of $bis(β -iodoethyl) trisulfide (10) did not allow distinction$ between structures $10a-d,^{10}$ although a later report did eliminate structure **lob"** Structural assignment **as** the

linear trisulfide **10a** was confirmed by a later X-ray crystallographic study.12

Due to the facile loss of a sulfur atom from both the penta- and heptasulfides **5** and 7 the branched structures 5b and 7b have been postulated⁹ as likely configurations for **5** and 7, respectively. For similar reasons Macy and co-workers have proposed that $bis(\beta\text{-chloro-}$ ethyl) tetra- and hexasulfides **(4** and **6)** exist as the branched species **4b** and **6b.4** These compounds have

not been rigorously characterized, but structures such **as 4b-7b** seem hardly reasonable in the light of current knowledge.

Higher polysulfides of mustard gas **(1)** were considered by Pernot to have the general structure **lla?** while Kinnear and Harley-Mason postulated other unlikely structures such as **llb** and **llc.13**

2. Branched Disulfides and Polysulfides

In 1921 Naik isolated diamino sulfides **13** from the reaction of primary amines with disulfur dichloride.¹⁴ Diamino thiosulfoxides **12** were postulated as intermediates.

 $\text{RNH}_2 + \text{S}_2\text{Cl}_2 \rightarrow \text{RNH-S}(\text{S})\text{NHR} \rightarrow \text{12}$ RNHSNHR **13**

Naik also reported the formation of stable thiosulfoxides **15** and **17** from the reaction of the malondiamides 14 and 16 with disulfur dichloride.¹⁵ With cyanoacetamide **(18)** and disulfur dichloride an unstable compound, proposed to have the thiono structure **19,** was isolated.¹⁶ Naik later demonstrated that products 15 and 17 were in fact the nonbranched disulfides.¹⁷ Thus, **19** may also be a linear disulfide.

Trifluoromethyl disulfide (20) appears¹⁸ to exist in the nonbranched form **20a** since reaction with mercuric chloride yields **21.** Compound **22** would be the antic-

$$
CF3-S-S-CF3 + HgCl2 \rightarrow CF3-S-Hg-S-CF3
$$

20a

$$
CF3-S(-S)-CF3 + HgCl2 \nrightarrow CF3-S-Hg-CF3 +
$$

20b
22

ipated product were the thiosulfoxide **20b** to be formed. Interestingly photolysis of trifluoromethyl disulfide **(20)** yields the corresponding sulfide,¹⁸ possibly via the photoisomerization **of** the nonbranched disulfide **20a** to the thiosulfoxide $(20b).^{18}$ X-ray crystallographic,¹⁹ ultraviolet,²⁰ and infrared²⁰ spectroscopic studies have further confirmed the linear structure **20a.** X-ray crystallography has also demonstrated that the corresponding trisulfide 23 $(R = CF_3)$ exists in the linear form $23a$ $(R = CF_3)$ rather than the branched forms $23b$ and 23c $(R = CF_3^5)^{19}$

In 1903 Wolff and Ott had postulated the formation of the trisulfide 23c $(R = (MeO_2C)_2CH)$ from the reaction of dimethyl malonate with disulfur dichloride and aluminum trichloride.²¹ Earlier the nonbranched

trisulfide $23a$ $(R = (MeCO)_2CH)$ had been prepared from the reaction of disulfur dichloride with 2,4-pentanedione.22 Baer and Carmack could not distinguish 23c
trisulfide 23a ($R = (MeCO)_2CH$) had been
from the reaction of disulfur dichloride with
tanedione.²² Baer and Carmack could not d:
MeO₂CCH₂CO₂Me + S₂Cl₂ $\xrightarrow{AICl_3}$ 23c, $R = (Me^2)$

$$
\text{MeO}_2\text{CCH}_2\text{CO}_2\text{Me} + S_2\text{Cl}_2 \xrightarrow{\text{AlCl}_3} 23c, \text{R} =
$$

(MeO₂C)₂CH

 $MeCOCH_2COMe + S_2Cl_2 \rightarrow 23a, R = (MeCO)_2CH$

between the branched $(23b, 24b, 24c)$ $R = C_{16}H_{33}$ and nonbranched forms $(23a, 24a, R = C_{16}H_{33})$ of di-nhexadecyl tri- and tetrasulfides $(23, 24, R = C_{16}H_{33})$ by

ultraviolet spectroscopy²³ although the measured dipole moments favored the nonbranched structures **(23a, 24a,** $R = C_{16}H_{33}$ ²⁴ In contrast Bezzi and Lanza reported that the tri- and tetrasulfides 23 and 24 $(R = C_{16}H_{33})$ existed in the branched forms **23b** and **24c** (R = $C_{16}H_{33}$, respectively.²⁵ In 1917 branched structures 23b and **24c** had been proposed for some alkali metal polysulfides.26 Tetrasulfides **24** derived from the reaction for thiolates with disulfur dichloride were reported to $RSK + S_2Cl_2 \rightarrow 24b$

$$
RSK + S_2Cl_2 \rightarrow 24b
$$

have the branched form **24b** due to the assumed branched nature of disulfur dichloride (see section II).27 Structures such **as 24b** had been proposed by Holmberg in 1908.²⁸

Parachor measurements²⁹ and chemical studies³⁰ supported the branched structure 24b $(R = C_2H_5)$ for diethyl tetrasulfide $(24, R = C₂H₅)$, while diethyl tetrasulfide prepared from diethyl disulfide and S_2 was proposed to have the structure $24c$ $(R = C_2H_5)^{31}$ From
Et-S-S-Et + S₂ \rightarrow 24c, $R = C_2H_5$

$$
Et-S-S-Et+S_2\rightarrow 24c, R=C_2H_5
$$

radioactive sulfur labelling studies it was concluded³² that no distinction between the branched **(24b, 24d)** and linear **(24a)** forms of diethyl tetrasulfide was possible. The reactions of ethanethiol with disulfur dichloride and ethyl iodide with sodium tetrasulfide yielded diethyl tetrasulfide $(24, R = C₂H₅)$, which Farmer and Shipley stated may or may not be branched.³³ Bloomfield, however, concluded that tetrasulfides (cf. **24)** must be nonbranched (cf. **24a)** when prepared from disulfur dichloride, since disulfur dichloride is nonbranched.³⁴ In the late 1930s electron diffraction studies 35,36 confirmed the nonbranched structure **24a** for tetrasulfides. This was further substantiated by dipole moment measurements³⁷ and recently by microwave spectroscopy.38 Diamagnetic susceptibility measurements for di-n-butyl tetrasulfide $(24, R = C_4H_9)$, prepared from n-butanethiol and disulfur dichloride, supported the nonbranched formulation **(24a, R** = C_4H_9).^{39,40}
 $n-BuSH + S_2Cl_2 \rightarrow 24a, R = C_4H_9$

$$
n\text{-BuSH} + S_2Cl_2 \rightarrow 24a, R = C_4H_9
$$

On the basis of an X-ray crystallographic study, Katz proposed that the polymeric tetrasulfide **25** existed in the branched form **25b.41** Chemical evidence also

supported this conclusion.⁴² However, in 1960, Schotte and Bergson indicated that these results could be better interpreted on the basis of a linear structure **25a.2e** In 1929 Levi and Baroni prepared diethyl pentasulfide **(26,** $R = C₂H₅$) from ethanethiol, disulfur dichloride, and

sulfur. Surprisingly, two isomers **(26b** and **26c, R** = C2H,) appeared to have been isolated.31 Structure **26b** was supported by parachor measurements²⁹ and by

TABLEI: RS,R

R	$\pmb{\chi}$	properties	
н	$\overline{2}$	electron diffraction ³⁵	
Cl	$\overline{2}$	electron diffraction, ^{35,36} dipole moment, ³⁷ parachor, ⁴⁵ dielectric constant, ⁴⁵ Raman, ⁴⁵ microwave ³⁸	
CH ₃	2	electron diffraction, ³⁵ dipole moment, ⁴⁶ Raman ⁴⁷	
	3.	electron diffraction, ⁴⁸ dipole moment, ⁴⁶ Raman ⁴⁹	
CF ₃	2	electron diffraction, ¹⁹ IR, ²⁰ UV ²⁰	
	3	electron diffraction ¹⁹	
C_2H_5	$\overline{2}$	dipole moment, ⁴⁶ parachor, ²⁹ Raman, ⁴⁹ diamagnetism ⁵⁰	
	3	parachor, ²⁹ Raman ⁴⁹	
	4	parachor, ²⁹ viscosity, ⁴⁴ atomic refraction ⁴⁴	
C_3H_7	$\overline{2}$	dipole moment, ⁴⁶ diamagnetism ⁵⁰	
C_4H_9	$\overline{2}$	diamagnetism ^{39,40}	
	3	diamagnetism ^{39,40}	
	4	diamagnetism, ^{39,40} atomic refraction, ⁴⁴ viscosity ⁴⁴	
C_6H_s	4	UV^{51}	
$C_6H_5SO_2$	$\mathbf{3}$	$X-ray10$	
C_6H_{13}	6	UV^{51}	
$C_{\rm s}H_{12}$	$\overline{\mathbf{2}}$	diamagnetism ⁴⁰	
	3	diamagnetism ⁴⁰	
	$\overline{4}$	diamagnetism, ⁴⁰ viscosity, ⁴⁴ atomic refraction ⁴⁴	
$C_{16}H_{33}$	$\mathbf{2}^-$	dipole moment, ²⁴ UV ²³	
	3	dipole moment, ²⁴ UV ²³	
	4	dipole moment, ²⁴ UV ²³	

chemical studies.30 Feher, however, suggested that the formation of the two isomers was probably due to impurities.43 In 1935 Bezzi reported that the results of atomic refraction and viscosity measurements for tri- **(23),** tetra- **(24),** penta- **(26),** and hexasulfides **(27)**

"excluded the possibility of formulas with all the sulfur atoms in a chain."44 Possible structures such as **23b, 24b, 26b,** and **27b** were also discussed, although no conclusive evidence, in favor of any one representation was presented.

Electron diffraction and other physical measurements for various di- and polysulfides (Table I) have generally confirmed their nonbranched nature, although contrasting reports have appeared.

B. Cycllc Compounds

In 1923 Chakravarti reported that the reaction of the dithiol 28 with disulfur dichloride produced the cyclic branched tetrasulfide 29.²⁷ The recorded properties⁵²

for **29** suggest that the compound is actually a polymer. A branched structure (30b) was excluded⁵³ for the dithiolane **30** on the basis of its stability to reduction by sodium borohydride and its recovery unchanged after reduction by zinc in dilute acid and subsequent reoxidation with iodine.

Mann and Pope investigated the reaction of 2,4,6 trimethyl-1,3,5-trithiane (31) with disulfur dichloride.⁵⁴

In addition to the major product, $bis(\alpha$ -chloroethyl) sulfide **(32),** a pale green liquid was isolated which was assigned the branched structure: 2,4-dimethyl-1,3-dithietane 1-sulfide **(33a).**

The latter could be formulated as the isomeric 3,5 dimethyl-1,2,4-trithiolane (33b) although the low boiling

point and green coloration, possibly sulfur contamination, are contrary to the properties expected 52 for such a compound.

Westlake and co-workers reported⁵⁵ that the reaction of ethylene with sulfur gave two compounds with empirical formulas $C_4H_8S_3$ and $(C_2H_4S_3)_4$, respectively.

$$
CH_2=CH_2 + S_8 \rightarrow C_4H_8S_3 + (C_2H_4S_3)_4
$$

The 1,2,5-trithiepane (34a) or 1,4-dithiane 1-sulfide (34b) structures were proposed⁵⁵ as possibilities for the $C_4H_8S_3$ formulation. Due to the presence of a labile

sulfur atom the thiosulfoxide structure **34b** was favored. The other isolated compound, $(C_2H_4S_3)_4$, was ascribed⁵⁵ the **unusual,** highly unlikely, structure **37. This** reaction merits further study.

Earlier Kaufmann reaction sodium disulfide with 1,2-dichloroethane in an attempt to prepare **1,2,5,6** tetrathiacyclooctane **(35a).**⁵⁶ The isolated product was $CICH_2CH_2Cl + Na_2S_2 \rightarrow 36$

$$
CICH_2CH_2Cl + Na_2S_2 \rightarrow 36
$$

not 35a but 1,4-dithiane (36), which was postulated⁵⁶

as arising from the, presumably, unstable 1,4-dithiane 1,4-disulfide (35b).

In 1938 Backer and Tamsma reported the formation of **4,4-dimethyl-1,2-dithiolane (39)** and 4,4-dimethyl-1,2-dithiolane 1-sulfide **(40b)** from the reaction of 2,2 **dimethyl-1,3-dibromopropane (38)** with sodium tetrasulfide.57 Reaction of the dihalide **(38)** with sodium

or potassium disulfide produced mainly the dithiolane **(39)** with the putative thiosulfoxide **(40b)** as a minor product. The dibromide **41** was reported to form the 1,Zdithiolane **42** and the branched trisulfide **43b** under similar conditions.⁵⁷ The branched forms **40b** and **43b** were favored over the, apparently, more likely 5,5-dimethyl-1,2,3-trithiane **(40a)** and the spiro-1,2,3-trithiane **43a** structures on account of the facile loss of sulfur to form the 1,Zdithiolanes **39** and **42** when **40** and **43,** respectively, were heated in the presence of copper. 13C and 'H NMR should permit distinction between the branched and linear structures.

Earlier Backer and Evenhuis isolated a compound, corresponding to the empirical formula $C_5H_8S_6$, from the reaction of pentaerythrityl tetrabromide **(44)** with sodium tetrasulfide.⁵⁸ Again due to the facile loss of

sulfur, in this case two atoms thereof, on heating the compound in the presence of copper, a dithiosulfoxide structure **(45b)** was proposed instead **of** the spirotrithiane formulation **(45a).** Reaction of the compound **45b** with potassium sulfide resulted in the loss of one sulfur atom and a product, postulated to be 2,3,7,8 **tetrathiaspiro[4.4]nonane** 2-sulfide **(46b),** was isolated.

The branched structure, instead of the isomeric, **2,3,7,8,9-pentathiaspiro[4.5]decane (46a),** was again assigned on account of the ready loss of sulfur on heating. The thermal product was the same dithiolane (47a) **as** had been isolated from the thermolysis of **45b** in the presence of copper.

The reaction of the tetrabromide **44** with sodium disulfide produced a solid of empirical formula C_5H_8 -S₄.58 Structures 47a,b and 48a,b were proposed⁵⁸ as likely formulations for this product.

Structure **47a** was eliminated because, unlike **2,3,7,8-tetrathiaspiro[4.4]nonane (47a),** prepared by the thermolysis of **45,** the new product lost sulfur, upon heating in the presence of copper metal, to produce **2,6,7-trithiaspiro[3.4]octane (49).58** The loss of sulfur, and the unlikelihood that sodium disulfide would add one or three sulfur atoms, caused Backer to eliminate structures and **48a** and **48b.58** Furthermore the oxidation of 47b with perbenzoic acid or hydrogen peroxide to produce the disulfone **50** or the thietane 1,l-dioxide 51, respectively, was cited⁵⁸ as conclusive evidence for the branched formulation **47b.**

Foss noted that the trithiane structures **40a, 43a, 45a, 46a,** and **48a** would exhibit the same chemical properties as reported for the claimed thiosulfoxides.^{2a} Thus, in his view, **40b, 43b, 45b, 46b,** and **47b** should be formulated **as 40a, 43a, 45a, 46a,** and **48a,** respectively. The results of ultraviolet and infrared spectroscopic studies for **40b, 45b,** and **47b** and polarographic studies on **40b and 47b supported**⁵⁹ this hypothesis. The presumed branched sulfides prepared by Backer and coworkers^{57,58} did not absorb at $350 \mu m$ in the ultraviolet spectrum, in accord with their postulation as 1,2-dithiolanes. Recently Höfle and Baldwin claimed 60 that structure **47b** is inconsistent with the observed nuclear magnetic resonance spectrum and that structure **48a** is the correct formulation. However details of this inconsistency were not reported, nor was it apparent which observations would allow one to differentiate between structures **47b** and **48a.**

Interestingly Campbell has reported the formation of **2,6,7,&oxatrithiaspio[3.5]nonane (52a),** which could not, in his opinion, be differentiated from the branched structure **52b.61** Structural differentiation should now

be possible via **'H** and 13C NMR spectroscopy. Recently Goor and Anteunis reported the synthesis

of polysulfides **39,40a, 42,** and **43a.@** 4,4-Dimethyl-

1,2-dithiolane **(39)** and **5,5-dimethyl-1,2,3-trithiane (40a)** were prepared by the reaction of sodium tetrasulfide with the dimesylate **53** whereas the reaction of the dimercaptan **54** with sulfur dichloride was the method of choice for the preparation of **42** and **43a.62** The latter synthesis leaves little doubt as to the linear nature of the polysulfide formed. The synthesis of the trithiane **40a,** from the reaction of **53** with sodium tetrasulfide, can be rationalized in terms of initial 6,6-dimethyl-1,2,3,4-tetrathiepane **(55a)** formation, subsequent isomerization to the branched form **55b** and, finally, loss of sulfur from the unstable thiosulfoxide **55b.**

The trithiane structures **39a, 43a, 45a, 46a, 48a,** and 53a, as suggested by Foss,^{2a} would seem to be correct although, as yet, conclusive evidence has not been forthcoming. Elimination of sulfur by the heating of 1,2,3-trithianes in the presence of copper may involve isomerization of compounds such as **48a** to the branched structure (cf. **48b).**

This labile nature of a sulfur atom in certain polysulfides coupled with the formation of sulfides from reactions with disulfur dichloride or sodium disulfide led early workers to postulate branched chain sulfur compounds. The initial physical and chemical data were conflicting, and it was not until the late **1940s** and early 1950s that the generality of nonbranched sulfur chains was widely accepted.

Occasionally even today the preparation of stable species containing $S=$ S bonding is claimed. For example, the reaction of sulfur with methyl oleate or methyl oleidate at $140-160$ °C reportedly⁶³ gives the trans-epithiostearates **56** and **57,** the structures of which were determined by NMR and mass spectrosocpy and the results of chemical transformation (desulfurization and LiA1H4 reduction). In light **of** the previously amassed evidence in favor of linear structures it seems more than likely that the compounds actually have

trithiolane type structures (cf. **58).**

It is highly unlikely that any of the reported "stable" thiosulfoxide containing compounds actually exist in the branched form. However there are many compounds whose structural assignments remain inconclusive due to the lack of, or conflicting, data concerning them. Modern techniques, especially **NMR** spectroscopy, should clarify the situation for most, if not **all,** of these.

I I I. Inorganic Compounds

A comprehensive survey of the field of inorganic thiosulfoxides is beyond the scope of this review. The properties of several inorganic species proposed to $\text{contain an S=S bond, viz. S}_2, ^{64} \text{S}_3, ^{65} \text{S}_4, ^{66} \text{S}_4^2, ^{66} \text{S}_2 \text{Cl}_2, ^{67}$ $S_2Br_2^{67b}S_2F_2^{68}S_2ClF,$ ^{68a} $S_2O,$ ⁶⁹ $({}^{\sim}O_3S)_2S_2$ ⁷⁰ have been described, and reports of branching in inorganic sulfur containing polymers have also appeared.⁷¹

I V. Equilibrium bet ween Straight and Branched SuHur Chains

Historically there has been much speculation as to the existence of an equilibrium between the linear (RSS) and branched forms (RS(=S)) in polysulfides.

A. Sulfur Halldes

The isolation and identification of the two isomers of disulfur difluoride **(59)68w** reopened the controversy

as to whether or not disulfur dichloride (ClS₂Cl) existed as a similar equilibrium mixture.72

Electron diffraction³⁶ and dipole moment³⁷ measurements indicated that disulfur dichloride possessed the linear structure, whereas some of its chemical reactions suggested that the branched-chain isomer $(Cl₂S=S)$ was, at least, in equilibrium with the linear form73 (see section **11).**

Recently physical measurements⁶⁷ have provided form⁷³ (see section II).

Recently physical measurements⁶⁷ have provided

evidence for tautomerism $(60 \rightarrow 61)$ in the case of di-

evidence displayide. Illustrials that also for displaying sulfur dichloride. Ultraviolet photolysis of disulfur dichloride, in argon and nitrogen matrices deposited at 12-20 K, followed by infrared spectral analysis of the

photolysed matrices indicated the presence of an unstable product assigned the branched structure 61.67a Similar results were obtained, by Feuerhahn and Vah1,67b for both disulfur dichloride and dibromide. This was the first definitive evidence consistent with a tautomerism to the branched form of disulfur dibromide, although mass spectral evidence has further indicated it.74

More evidence for the branched chain isomer **61** was obtained recently $67c$ by examination of the microwave spectrum of disulfur dichloride. The S-S bond length in S_2Cl_2 was shown^{67c} to be shorter than the standard single bond length but not as short as that in S_2F_2 .

B. Di- and Polysulfldes

The possible equilibrium between linear and branched forms of disulfides has been reviewed brief- $\rm{ly.}^{2d,75}$ However only acyl and vinylogous acyl disulfides 76 react with triphenylphosphine whereas trisulfides readily form disulfides with the same reagent, possibly via thiosulfoxide intermediacy.^{$77,78$} Desulfurization reactions of di- and polysulfides (RSX, $X =$ $SR^{76,79a-e}$ and $SS_xR^{77,79e-1}$, with trivalent phosphorus reagents, have been extensively studied. Ionic mechanisms involving phosphonium salt intermediates have generally been proposed for such reactions although recently Harpp et al.78 have suggested that in low polarity solvents desulfurization via thiosulfoxide intermediates may become important.

Wieland and Schwahn demonstrated that reduction of disulfides, prepared from an 35S-labeled thiol and a different unlabeled thiol, did not give two equally radioactive thiols.80 This observation precluded an equilibrium between the linear disulfide **62** and its branched isomer **63.**

$$
\begin{array}{ccc}\n\text{RSSR'} & & \text{RSSR} \\
\text{RSSR'} & & \text{RSSR} \\
\text{S} & & \text{RSSR} \\
\text{S} & & \text{S} \\
\end{array}
$$

Irradiation of bis(trifluoromethy1) disulfide **(20a)** in

a silica vessel gave bis(trifluoromethyl) sulfide (64) and
\nCF₃SSCF₃
$$
\Rightarrow
$$
 CF₃ \rightarrow CF₃ \rightarrow CF₃SCF₃ +¹/₈S₈
\n**20a** 20b 64

sulfur, possibly via thiosulfoxide 20b intermediacy.⁸¹ Initial radical S-S bond cleavage is more likely, however.

More recently, evidence was amassed for branched sulfur chains $(S-S(=S)\text{-}S)$ at low temperatures.^{71a,82} Bands in the region of **670** cm-' were observed in the infrared spectrum of the matrix-isolated (noble gases, nitrogen, or carbon disulfide) condensate obtained by cooling sulfur vapor to below -150 °C.^{71a,82} Such bands had been attributed to the presence of S_2 ,⁸³ but the present evidence^{71a,82} suggests that the S=S bond of branched sulfur chains is responsible.

Thiosulfoxide intermediate (66) has been proposed⁸⁴ for the facile transformation **(3** h, boiling ROH) of bis(2,4-dinitrophenyl) disulfide **(65)** to the sulfide **(67).658** It is feasible that the withdrawing effect of the 2,4-dinitrophenyl group permits isomerization to the branched form (see sections **IV** and **VI)** but does not render **66** stable under these conditions. Thiosulfoxide

intermediacy **(66)** was first proposed for the oxidation of 65 with concentrated $HNO₃⁸⁶$ but later studies demonstrated that the disulfide **(65)** used was a mixture of **65** and **67. A** reinvestigation by Stepanov and coworkers⁸⁵ led them to conclude (from product distribution) that an equilibrium existed between the linear **(65)** and branched **(66)** forms.

C. Allylic Di- and Polysulfides

The facile cis-trans double bond isomerization of allylically unsaturated *di-* and polysulfides **68** has been rationalized in terms of a thermal equilibrium between **68** and the thiosulfoxide **69.87** Rotation around the

indicated bond in **69** can then explain the rapid interconversion of meso and racemic forms of **68b.** The isomerization **(68b, one pure isomer to a 50:50 mixture** of both) was observed to proceed at a much faster rate than homolytic S-S bond exchange and disproportionation reactions, and the rate was unaffected by the presence of tetrasulfides,^{87a} which are known⁸⁸ to produce RS₂ radicals under similar conditions An intermolecular chain mechanism (involving homolytic S-S bond cleavage) for exchange of trisulfide end groups was similarly discounted from the observation that the rate was independent of concentration and no mixed trisulfides were detected when the isomerization was performed in the presence of another trisulfide. $87a$ The invariance of isomerization rate with change in solvent polarity mitigates against charge separation in the transition state. Likewise, homolytic **C-H** or C-S cleavage can be disregarded in that neither oxygen nor **2,6-di-tert-butyl-4-methylphenol** affect the rate, and

isoallylic compounds (cf. **70)** are not formed in the reaction. Preliminary evidence indicates that a similar

isomerization occurs for the double bonds in the related di- and trisulfides **71a** and **71b,** with a rate constant of

the same order as that found for the isomer interconversion of **68.60**

 α -Substituted allylic disulfides (72) rearrange at room temperature to the more stable isomers **74** with full double allylic inversion. 60 Contrastingly the alkyl allyl

disulfides **75a, 75b** are thermally stable. These observations were rationalized in terms of an intramolecular double [2,3]-sigmatropic rearrangement of the diallylic species **72** via the thiosulfoxide **73.**

The rearrangements of 72, (R=H or Me) followed first-order kinetics, and the negative value for ΔS^* (obtained by **NMR** spectroscopy) was consistent with a cyclic transition state and similar in magnitude to those values reported for the allylic sulfenate to sulfoxide rearrangement.⁸⁹

Evidence for thiosulfoxide **76** intermediacy was ob**tained** by trapping experiments. Allylic disulfides react rapidly with triphenylphosphine below 100 °C whereas alkyl and aryl disulfides are stable under these conditions. 90 Accordingly it has been proposed that

^{*a*} Values in brackets are Benson's estimates.⁹¹ ^b These values are included for comparison purposes.

branched-chain intermediates are involved.87

Treatment of the allyl alkyl disulfides **75** with triphenylphosphine was thus anticipated to afford the sulfides 77 and $Ph_3P=S$ via trapping of the intermediate thiosulfoxide **76.** Additionally, increasing the bulk of R_3 , R_4 , and R_5 should hinder the formation of the thiosulfoxide **76** (and hence **77),** whereas increasing size of R_1 and R_2 should favor thiosulfoxide 78 (and 77) formation. 60 ⁻ This was verified experimentally by measurement of the rate of reduction of the allylic disulfides **75a-c** at 60 "C **(75e** and **75f** spontaneously lose sulfur at 25 °C) as shown in Table II.

At high enough concentrations of triphenylphosphine the reaction with 75 is first order with $\Delta H^* = 20 \pm 1$ kcal and $\Delta S^* = -9 \pm 1$ eu⁶⁰ and, according to Benson,⁹¹ assuming the triphenylphosphine reaction to have an activation energy of **3-4** kcal, the thiosulfoxide must then have a heat of formation no more than 10 kcal greater than that for the disulfide. Table **I11** shows some measured, or estimated, thermodynamic data for various molecules containing the S=S functionality.

Dialkyl sulfides (cf. diethyl and dibenzyl) are apparently inert toward reaction with S_8 , even at 90 °C for several days.⁹⁶ However, under identical conditions allyl methyl sulfide **(78a)** and diallyl sulfide **(78b)** were converted (ca. 40%) to the corresponding disulfides **(82a, 82b)** with complete allylic rearrangement (by

 $a, R = CH₃; b, R = CH₂CH = CH₂$

NMR), as demonstrated by the conversion of allyl-1,1- d_2 methyl sulfide to allyl-3,3- d_2 methyl disulfide. These NMR), as demonstrated by the conversion of allyl-1,1- d_2
methyl sulfide to allyl-3,3- d_2 methyl disulfide. These
results (78 \rightarrow 82) have been interpreted⁹⁶ as occurring
through a series of equilibrie involving dip through a series of equilibria involving dipolar polysulfide chains (cf. **79, 80)** and thiosulfoxide **(81)** intermediates.

W. Thiosulfoxide Intermediates in the Reactions of Sulfoxides, Suifimides, Sulfur Yiides, and Thioisuifina tes

The intermediacy of thiosulfoxides in the reduction,

by sulfurating agents, of compounds containing semipolar linkages (e.g., sulfoxides, S=0, and sulfimides, S=NR) has been discussed by many workers.^{1,97-118}

The reaction of alkyl sulfimides **83** with carbon disulfide, to give sulfides **85** and sulfur, has been proposed⁹⁸ to involve the unstable thiosulfoxide intermediates **(84).**

$$
R_{2}S = NH \stackrel{CS_{2}}{\longrightarrow} \stackrel{R_{2}S = NH}{\longrightarrow} \stackrel{HH}{\longrightarrow} \stackrel{TH}{\longrightarrow} + \stackrel{RH}{\stackrel{R_{2}S = S}{\longrightarrow}} \stackrel{H}{\longrightarrow}
$$

84
85
85

$R = Et$ or Me

In a series of papers the efficacy of sulfoxides (usually $Me₂SO$) as oxidants for various thio acids (A-SH, A = $RC(=0),^{99a-c} RC(=S),^{99f} R_2P(=0),^{99a,b,e}$ and $R_2P(=S)$ S)^{99b,d,g,h}), thiols (RSH),¹⁰⁰ thiocarbonyl compounds $(RC(=S)R')$,^{101,102c,103} and thiophosphoryl compounds $(R_3P=S)^{102}$ was established. The thioacids (A-SH, A = RC(=S) and R₂P(=S)) have been shown to efficiently reduce other semipolar linkages such as sulfimides ($R_2S=NR'$) and sulfur ylides $(R_2S^+ - \text{CR'}_2)^{99f-h}$

Mikolajcyzk^{99,101,102} proposed thiosulfoxide intermediates **88,** and **91** in several of the above reactions, and general mechanistic routes to their formation are outlined below (Schemes **I** and 11).

Oae and co-workers also examined the reactions of carbodithioic acids (RCS2H) **(93a)** and 0,O-dialkyl dithiophosphates $((RO)_2PS_2H)$ 93b with sulfoxides **(92a), sulfimides (R₂S=NTs) (92b), and sulfonium**

ylides $(R_2S_{\text{+--C}}(CO_2Me)_2)$ (92c).¹⁰⁴ The appropriate

sulfides (cf. **95)** were obtained in each case along with the disulfides **94** (from **92a,92b)** and dithio esters **96** (from **92c** only).

Oae rationalized¹⁰⁴ the formation of the disulfides 94 and dithio esters **(96)** in terms of the same intermediate sulfonium salt **97** formed by initial protonation of the

SCHEME I1

terminal X group (in **92)** by the appropriate dithioic **(93a)** or dithiophosphoric acid **(93b).** Subsequent transformations are shown in Scheme III. Mikolajczyk also isolated disulfides **103** from the reactions of sulfoxides with thiocarboxylic and phosphorus thio and dithio acids.^{99a,d} On account of the sensitivity of product distribution (disulfides or sulfur-free acid) to temperature and solvent effects it was proposed that oxidation of the thio and dithio acids with sulfoxides was a bidirectional reaction involving intramolecular (Scheme I) or intermolecular decomposition of the intermediate adduct **101** (Scheme IV).

The importance of the sulfoxonium cation (cf. **97)** was demonstrated by the failure of aryl sulfoxides (compared to the more basic alkyl sulfoxides) to react with diphenylphosphinothioic acid **(R2P(S)OH).** This was further confirmed by the rate enhancement effected by the addition of strong acids (p-toluenesulfonic acid, boron trifluoride, trifluoroacetic acid).^{99a,d}

Chiral phosphine sulfides **104** react with dimethyl sulfoxide in the presence of sulfuric acid to give the corresponding phosphine oxides **(106)** with complete inversion of configuration at phosphorus.^{102a,b,d} Such

SCHEME 111

a result mitigates against a Wittig-like intermediate (and hence a thiosulfoxide (S=S) intermediate) and suggests^{102b,d} an intermolecular decomposition of the initial protonated species **105** (Scheme V).

However the reaction of *cis-* and trans-dioxaphosphorinan sulfides 107 under similar conditions resulted

in full retention of configuration at phosphorus.^{102a} Previously Mikolajczyk and Para^{99e} had shown that chiral phosphonothioic acids **(109)** (1 equiv) reacted

with racemic methyl alkyl sulfoxides (110) (2 equiv) to give the appropriate methyl alkyl sulfide (111), phosphorus oxo acid **112,** and optically active recovered sulfoxide **113.** It appears that the (-)-thio acids **109a** and **109b** both have the *R* configuration and react preferentially with the sulfoxide enantiomer of the same configuration.

These results were rationalized⁹⁹ on the basis of steric control of asymmetric induction, and the different rate of reduction of the enantiomeric sulfoxides was considered as being due to nonbonding interactions between substituents attached to the phosphorus and sulfur atoms. The favored transition states (en route to a Wittig-type intermediate and subsequent thiosulfoxide \overline{S} = \overline{S}) were postulated^{99e} as depicted below.

SCHEME V

SCHEME VI

Thiosulfoxides have also been suggested **as** intermediates in the **unusual** oxidative desulfurization reactions of s-trithianes (cf. **114)** with iodine in dimethyl sulfoxide¹⁰⁵ (Scheme VI).

SCHEME VI1

SCHEME VI11

SCHEME IX

More recently sulfoxides were reduced to the corresponding sulfides, in high yield, by a trifluoroacetic anhydride-hydrogen sulfide system.¹⁰⁶ The mechanism is unclear, but the first step is apparently nucleophilic attack on the anhydride by the sulfoxide oxygen. This is suggested by the selective reduction of sulfoxides in the presence of sulfinates $(RS(=O)OR')$ or thiolsulfinates $(RS(=O)SBu-t)$, the external oxygen atoms of which are undoubtedly less nucleophilic than that in the sulfoxide. Although thiosulfoxides were not mentioned as potential intermediates in the reaction, a mechanism to their formation can be postulated (Scheme **VII).**

Alkyl and aryl sulfoxides are also reduced, to the corresponding sulfides, by hexamethyldisilthiane **(1 15)** (or **hexamethylcyclotrisilthiane),** possibly via thiosulfoxide (116) intermediates¹⁰⁷ (Scheme VIII).

Steric and solvent polarity effects lead to the conclusion that nucleophilic attack by sulfoxide oxygen on silicon is the important initial step.¹⁰⁷

Thiosulfoxides may also be intermediates in the reactions of sulfoxides with boron sulfide $(B_2S_3)^{1,108,109}$ and silicon sulfide $(SiS₂)^{1,109a}$ (Scheme IX).

In recent years studies of the reactions of sulfoxides and sulfimides with tetraphosphorus decasulfide (P_4S_{10}) have indicated the likelihood of thiosulfoxide inter $mediates.^{1,109a-118}$

In 1976 Micetich showed¹¹⁰ the efficacy of P_4S_{10} (in the presence of pyridine) **as** a reductant for conversion of penicillin and cephalosporin sulfoxides **117 and 118** to the corresponding sulfides **121,** and **122** under mild conditions (CH_2Cl_2 , 20 °C). Since no precautions were taken to exclude moisture during the reaction, it was

proposed¹¹⁰ that thiophosphoric acids, formed by reaction of P_4S_{10} with adventitious water, were the active reductants, or, alternatively, that thiosulfoxide intermediates **119** and **120** were initially formed and gave the appropriate sulfides **121** and **122** by subsequent extrusion of sulfur.

The same reducing system $(P_4S_{10},$ pyridine, CH_2Cl_2) was successfully utilized for the conversion of allenic sulfoxides 123 to the sulfides 124 .¹¹¹

It was later demonstrated^{1,109a,112,115} that the effective reduction of other stable alkyl and aryl sulfoxides **125**

$$
\underset{125}{R_2S=0} + P_4S_{10} \rightarrow [\underset{126}{R_2S=}S] \rightarrow R-S-R+ \frac{1}{8}S_8
$$

with P_4S_{10} did not require the presence of pyridine, nor did anhydrous conditions affect the product distribution.

Both methylene chloride¹¹² and carbon disulfide^{1,109a} have been used as solvent media for the reaction, CS_2 apparently allowing reaction to proceed at lower temperatures. No conclusive evidence as to the intermediacy of thiosulfoxides (126), in the reaction $125 \rightarrow 127$ has, as yet, been obtained¹¹³ although recently dimethyl disulfide and allyl disulfides were isolated¹¹⁴ as minor products from the reactions of P_4S_{10} with neat dimethyl sulfoxide¹¹⁵ and allyl sulfoxides (in CS_2),^{109a} respectively. These observations may be readily rationalized in terms of initial thiosulfoxide formation and subsequent isomerization (see section IV).

Good correlation between the rate of reduction and increasing electron-donor capability of **X** was observed¹¹² for a series of sulfoxides $((p-XC₆H₄)₂SO)$ (Table IV).

Considering the adamantane-like structure of P_4S_{10} , in the solid state (with four equivalent $P=$ S bonds),

these results suggest¹¹² that an initial attack on phosphorus by the sulfoxide oxygen atom forms a Wittig-like intermediate or transition state **(128)** which breaks down to give an unstable thiosulfoxide **129.**

Further support for this initial attack by sulfoxide oxygen was afforded by the observation that sulfones (RS02R)l16 and the cyclic sulfinates **130** and **131** did not similarly react with P_4S_{10} .

This suggests that, in **130** and **131,** inductive electron withdrawal by the ring oxygen is more important in determining the nucleophilicity of the external oxygen than is a resonance contribution of the type shown below.

 P_4S_{10} was also shown¹¹⁷ to efficiently reduce sulfimides (cf. **132)** to sulfides **133.** Correlations between the electron-donor abilities of groups attached to the
sulfimide sulfur atom and the rate of reduction were
 $R_2S = N - X + P_4S_{10}$ sulfimide sulfur atom and the rate of reduction were

$$
R_2S = N \longrightarrow \qquad + P_4S
$$

132

$$
X = -SO_2C_6H_4CH_3 \cdot p, H
$$

R = **alkyl** or aryl

again apparent, and on this basis, it was proposed 117 that a mechanism similar to that postulated for sulfoxide reduction 112 was operative.

Thiosulfoxides may also be involved **as** intermediates in the reductions of sulfoxides with other phosphorus reagents, viz. the dimer of (p-methoxyphenyl)thioxophosphine sulfide115 and thiophosphoryl bromide **(PS-** $Br₃$ ¹¹⁸ With the former, both dimethyl and tetramethylene sulfoxides **(134a, 134b)** were converted to their respective sulfides and disulfides¹¹⁵ (Scheme X).

Thiophosphoryl bromide proved to be, in many ways, a superior reagent to tetraphosphorus decasulfide for the reduction of both alkyl and aryl sulfoxides.¹¹⁸ The reagent was, in contrast to P_4S_{10} , conveniently soluble in common solvents, and the yields of sulfides obtained were, in general, greater than those resulting from the reaction of P_4S_{10} with the appropriate sulfoxides. The mechanism is unclear at present, but, by analogy with the P_4S_{10} reaction,¹¹² it seems probable¹¹⁸ that a Wittig-like intermediate is first formed, subsequent breakdown of which affords consecutively a thiosulfoxide and then sulfide (Scheme **XI).**

Higher yields of allyl disulfides are obtained by treatment of allyl sulfoxides with B_2S_3 (compared to P_4S_{10} ^{1,109} Baechler^{109b} recently employed this reagent for reaction with a series of allyl aryl sulfoxides. Correlation of aryl and allyl structural modifications with disulfide/sulfide product ratio distribution permitted assessment of the factors affecting thiosulfoxide stability. The two competitive paths open to putative intermediate thiosulfoxides, viz., (2,3)-sigmatropic rearrangement to disulfides (path **A)** (see section IVC) and spontaneous desulfurization to sulfides (path B), appear to be influenced by aryl substituent modifications.

In accord with expectation (viz., that electron-withdrawing groups would stabilize the thiosulfoxide sufficiently (see sections IV and VI and $65 \rightarrow 67$) to allow sigmatropic rearrangement to compete more effectively with desulfurization) a greater yield of disulfide product was obtained for 75, $R_5 = 4 - O_2NC_6H_4$ (40%), than for **75,** $R_5 = 4 \cdot CH_3 O C_6 H_4 (0\%)$ (cf. **75,** $R_5 = C_6 H_5$, 30%).

These results would argue for $(p-d)\pi$, rather than dative, bonding between the thiosulfoxide sulfur atoms. 109b in agreement with previous conjecture^{2a,b} and experimental evidence.^{68,121}

A thiosulfoxide has been discussed as a possible intermediate in the acid- or sulfide-catalyzed decomposition of S-tert-butyl benzenethiosulfinate **(135)** $(Scheme XII).¹¹⁹$

It was suggested¹¹⁹ that the presumably^{109,112} facile breakdown of thiosulfoxides, to give sulfides and sulfur, **SCHEME X**

SCHEME XI

SCHEME XI1

$$
\begin{array}{ccc}\n0 & \n\text{PhS} - \text{SBu} \cdot t & \n\text{r}^+ & \n\text{DhS} - \text{SBu} \cdot t & \n\end{array}
$$
\n
$$
\begin{array}{ccc}\n135 & 136 & 137 \\
\text{PhSSBu} \cdot t & + \text{PhSSBu} \cdot t & + \text{Ch}_{2} = \text{C}(\text{CH}_{3})_{2} \\
138 & 139 & 140\n\end{array}
$$

may release sulfur in a highly reactive form. Insertion into the S-S bond of **135** by this reactive sulfur atom, or,direct sulfur transfer from the thiosulfoxide, might generate a species postulated **as an** intermediate in the mechanistic routes to **138** and **139.**

VI. ThionosuHHes

,, In 1950, at a time when no stable thiosulfoxides $(R_2S=S)$ were known, Foss reasoned^{2a,b} that sulfurbranched species involving d orbital expansion of the central sulfur atom could only be stable when this atom was attached to strongly electron-withdrawing groups (e.g., fluoro or alkoxy). This hypothesis was later confirmed experimentally both by Kuczkowski, in studies on sulfur monofluoride,¹²⁰ and by Thompson and his co-workers. The latter, in a series of papers, 121 reported the preparations of dialkoxy disulfides **(149)** and their branched-chain thionosulfite isomers (cf. **143).**

When 1,2-diols (cf. **141)** were reacted with disulfur dichloride, in the presence of triethylamine, polymeric products, with gross composition corresponding to 142, were obtained. These macromolecules could then be degraded by alkoxide catalysis to the appropriate thionosullite **143,** sulfite **144,** and starting diol **141.** The crystalline thionosulfite products, unstable to prolonged exposure to light and room temperature, were characterized by combustion elemental analysis, molecular weight determination, and their spectral properties.¹²¹

Treatment of the 1,2-diols **141** with disulfur dichloride in the presence of triethylamine or methylmagnesium bromide, under conditions of high dilution, afforded products **143** and **144** directly.121

Extension of this work to 1,3-diols allowed^{121c} the preparation (from 1,3-butanediol **(145))** of thionosulfite **146,** along with the corresponding sulfite **147** and sulfoxylate **148.**

Support for the thionosulfite structures **143** was afforded¹²¹ mainly by the similarity of their NMR spectra to those of the sulfites 144.^{121,122} The thionosulfites 143 absorbed around 250 nm **(e** 2200-2600) in the ultraviolet, and this may be attributed to the $>S=$ S linkage.

Thompson's studies 121 not only gave experimental proof for the existence of thionosulfites but also allowed assessment of the validity of the previous claimed preparations of this class of compounds. It seems clear from his work that the compounds prepared by Leng- $\frac{1}{25}$ Meuwsen,¹²⁴ and others¹²⁵ are dialkoxy disulfides ROSSOR (149)^{121b} and not the branched forms ROS-(=S)OR (150). Previously evidence had been amassed both in favor of and against the branched structure **150.** Lengfeld¹²³ reacted sodium alkoxides with disulfur dichloride and obtained products that he presumed had the disulfide structure 149 . Meuwsen,¹²⁴ analyzing the results of a similar experiment, claimed to have obtained a mixture of both **149** and **150,** the latter being colored. This result was shown to be spurious¹²⁶ in that the coloration was merely caused by sulfur chloride impurities.

Physical data, in the form of parachor,^{125a} and dipole moment39 measurements were consistent with the dialkoxy disulfide formulation **149.** Raman spectral studies 37,127 lent further support to these results, in that the observed frequency of the S-S bond, in the diethyl ester prepared by Lengfeld¹²³ (149, $R = Et$), was 510 cm^{-1} , close to that expected for a S-S single bond. The rotational barrier about the S-S bond in $149 (R = Et)$ has been estimated,¹²¹ via NMR variable temperature studies,¹²⁸ to be $8-9$ kcal/mol. This result favors the unbranched structure **149** since normal **S-S** single bonds have similar values. 131

An equilibrium between the two isomers **(149** and **150)** may explain the facile loss of sulfur observed on treatment of 149 with alkoxide ion^{125b} and with Lewis acids.¹³⁰ However, Foss has pointed out^{2a,b} that chem-

ical methods cannot be trusted to distinguish between the two possibilities (149 and 150), and recent studies¹³¹ on the chemical reactivity of dialkoxy disulfides do not substantiate such an equilibrium.

Since Thompson's pioneering studies, 121 only one other thionosulfite preparation has been reported.¹³² Treatment of the pinacol **151** with the benzimidazole sulfur transfer reagent **152** gave the thionosulfite **153** in 50% yield.

Elemental analysis, exact mass measurement, and the **13C** spectrum were consistent with structure **153.132** Recently the crystal structure was determined.132b The S-S bond length (1.901 Å) was clearly shorter than that for disulfides (2.02-2.06 **A)133** and of the same order as those for F_2S_2 (1.86 Å),¹³⁴ S_2 (1.89 Å),¹³⁵ and the thiosulfinyl)amines—(-N=S=S) (see section VIII).

VI I. Thlosulflnes

This area has been reviewed very recently.^{154b} The present section is included for the sake of completeness and to provide easy access to salient references and new data.

As yet not stable thiosulfines $(>=S=S)$ have been isolated, although several workers have proposed their transient existence. The putative stable thiosulfines 155

prepared by Naik,^{17,136} from the reaction of disulfur dichloride with the malondiamides **154,** have been

shown by one of us (G.W.K.) to have the dimeric structure 156.137 Similarly Naik's reported^{17,136} preparation of the bis(thiosulfine) 158, by the reaction of disulfur dichloride with 5,5-dimethyl-1,3-cyclohexanedione **(157),** is questionable in that a recent reinvestigation¹³⁸ of the reaction afforded only the sulfide **159. 139**

A thiosulfine structure (160) has been assigned¹⁴⁰ to

/SH s=s=c **160**

the product $(H_2CS_4)^{141}$ obtained by treatment of ammonium perthiocarbonate $[(NH₄)₂CS₄]$ with formic acid.¹⁴² However, in the absence of further physical and chemical studies, this structural assessment must remain tentative. Several authors¹⁴³⁻¹⁵⁰ have reported dithioanion species **(161-168) as** intermediates. These

may be equally well represented by the thiosulfine isomeric or resonance forms **(169-176).**

Thiosulfine intermediates **178** may also be involved **188**

in the formation of the dithiadiazapentalenes **179** from the reaction of disulfur dichloride (or sulfur dichloride) with the dioximes **177.151** Thiosulfine **(178)** intermediacy in the reaction of 177 with sulfur dichloride may $\binom{1}{s}$

be rationalized in terms of initial thione formation and subsequent combination with SCI₂.¹⁵²

Recently thiosulfines 183 have been proposed¹⁵⁴ as intermediates in the reaction of morpholine with the

unstable (a-chloroalky1)disulfanes **181** and hypothetical dithiiranes **182.** The intermediate **183a** could not be trapped with alkynes or strained alkenes but rearranged to the dithio ester **184a,** which on reaction with morpholine gave the stable compound **185.** Similarly the

182 183

dithio ester **184b** reacted with morpholine to give the products **186 and 187.** In contrast, **180c** did not re-

arrange to a dithio ester; the intermediate thiosulfine **183c was instead trapped directly by morpholine to form the disulfide 188.** form the disulfide **188.**

A thiosulfine has been postulated¹⁵⁴ as a precursor to the adducts **190** and **191** formed from reaction of alkynes with 1,2-dithiole-3-thiones **189.155**

Very recent studies have indicated the presence of thiosulfine intermediates 193 in the reduction of sulfines

 $(cf. 192)$ to thiones (194) ,¹⁵⁶ with P_4S_{10} . Thione formation, by loss of sulfur from a thiosulfiine intermediate, has been previously postulated¹⁹⁶ (see section VIIIC7). Thiones **195** also react with radioactive sulfur to give
the corresponding labeled thiones **198**, presumably via
 $R_2 \text{C=S} + S^* \longrightarrow R_2 \text{C=S}^*$ the corresponding labeled thiones **198,** presumably via

the thiosulfine **(196)** and dithiirane **(197)** intermediates. 157

VI I I. N-(Thlosulflny1)amlnes

A. Preparation

The first stable N-(thiosulfiny1)amine) **(200)** was prepared by Barton and Robson, in 1974,¹⁵⁸ from the reaction of *N*,*N*-dimethyl-*p*-nitrosoaniline (199) with tetraphosphorus decasulfide. The structural assignreaction of **N,N-dimethyl-p-nitrosoaniline (199)** with tetraphosphorus decasulfide. The structural assign-

ment was verified both by unambiguous synthesis, from **N,N-dimethyl-p-phenylenediamine (201)** and disulfur dichloride, and from the nature of the cycloadducts obtained by reaction of **200** with dienes such as norbornadiene. Other possible structures (cf. **202)** were

eliminated on the basis of these results. It seems likely that **200** is formed via the intermediate thionitroso compound **202b.**

The structure of **200** was later verified by its preparation from 201 and diethoxy disulfide.¹⁵⁹

Inamoto and co-workers demonstrated 160 that the sterically hindered *N-(* **thiosulfinyl)-2,4,6-tri-tert-buty**laniline **(203)** existed in equilibrium with the unique *5H-* 1,2,3-dithiazole **204.**

This equilibrium was not observed¹⁶⁰ for N-(thio**sulfinyl)-2,4-di-tert-butyl-6-methylaniline (205),** and

under similar reaction conditions as used for the preparation of **203,** 2,4,6-trimethylaniline and disulfur dichloride did not form an N-(thiosulfinyl) compound,^{160,161} although the latter is apparently produced in low yield when the reaction and workup procedures are performed at lower temperatures.160

The isomerization $(203 \rightleftharpoons 204)$ was rationalized¹⁶⁰ as occurring via a cycloaddition of the $-N=S=S$ moiety with one of the relatively electron-rich $C=C$ bonds¹⁵⁸ in the sterically hindered aryl system of **203.** It seems likely that plararity between the $[$ (thiosulfinyl)amino] and aryl groups is precluded in **203** but less so in **205.** Thus, resonance stabilization of the $-N=S=S$ moiety in **205** may account for the difference in stabilities of **203** and **205. 2,4-Di-tert-butyl-6-isopropylaniline (206)** reacted with disulfur dichloride to give the corresponding N-(thiosulfiny1)aniline **(207)** as an unstable

purple oil.^{160b} The relative stability of the N -(thiosulfiiy1)aniline **205,** compared to **207,** is noteworthy **and** has been rationalized162b (section VIIIC). **A** similar reaction with 2,5-di-tert-butylaniline (208) afforded^{160b} only the sulfur diimide **209,** thus indicating the im-

with sulfur dichloride $(SCl₂)$ gave the N-(thio-
sulfinyl)anilines 203 and 205, respectively.^{160b} The sulfinyl)anilines 203 and 205, respectively.^{160b}

sulfur diimides **212** or **213** and unreacted starting amines were also isolated. The formation of the *N-* (thiosulfinyl)anilines was ascribed to the known¹⁶³ partial dissociation of sulfur dichloride into disulfur dichloride and chlorine. However, in view of the presumably low concentrations of disulfur dichloride present in the mixture, it seems reasonable to assume that the (thiosulfiny1)amine product **203** or **205** can also arise from the reaction of a thionitroso $(-N=S)$ intermediate164 with sulfur dichloride. N-(Thiosulfinyl)amines (216) have also been prepared¹⁶⁵ by the
RN=SCl₂ + S(Si(CH₃)₃)₂ → RN=S=S
214
216

$$
RN = SCl2 + S(Si(CH3)3)2 \rightarrow RN = S = S214
$$
 215 216

a, R = t-Bu; **b**, R =
$$
(CH_3)_2C(CN)
$$
;
c, R = 2,4,6-Br₃C₆H₂

treatment of N-tert-butyl-, **N-(1-methyl-1-cyanoethy1)-,** and **N-(2,4,6-tribromophenyl)dichlorosulfimides (214a-c)** with hexamethyldisilthiane **(215).** Only sulfur diimides $(-N=S=N-)$ were obtained when other dichlorosulfimides, containing less electron donating or dichiorosultimides, containing less electron donating or
less sterically hindered groups attached to nitrogen,
were reacted with 215. No other stable alkyl-N-(thio-
sulfinyl)amines have been isolated¹⁶⁶ although the inwere reacted with **215.** No other stable alkyl-N-(thiosulfinyl)amines have been isolated 166 although the intermediacy of N-(thiosulfinyl)amines, in the preparation of alkylsulfur diimides **218** from N,N-bis(trimethy1-

$$
R-N(SiMe3)2 \xrightarrow{S_2Cl_2} [R-N=S=S] \xrightarrow{RNSS} R-N=S=N-R
$$

218

 $R = aryl$ or alkyl

silyl)amines (217) and disulfur dichloride, has been postulated. 167

6. Physlcal Properties

1. Dipole Moments

Recently the dipole moment for 2-methyl-4,6-ditert-butyl-N-(thiosulfiny1)aniline **(205)** was measured and compared¹⁶⁸ to the values obtained for the *N*-(sulfinyl) derivative **(219)** and 2,4-di-tert-butyl-6 methylbromobenzene **(220).** The measured dipole moments for **219** and **220** [2.05 **and** 1.63 D, respectively) were similar enough to values reported for N-sulfinyl-

aniline $(1.9-2.0 \text{ D})^{169}$ and the group moment for Br (1.54) **D)170** to allow the assumption that the contribution of the **2,4-di-tert-butyl-6-methylphenyl** group to the overall dipole moments was negligible.¹⁶⁸ On this basis the experimental dipole moment (1.51 D) for **205** was assumed to be due to the group moment of the (thiosulfiny1)amino group. The ratio of the negative charge on the sulfur(II) of the $-N=$ S $=$ S group to that on the nitrogen ($\delta S^{-}/\delta N^{-}$) was calculated to be 3.8 from the estimated bond moments for $S=S$ and $N=S$ bonds (2.60 and 0.55 D, respectively) and crystallographic data for the [(thiosulfinyl)amino] group of **205.17'** The corresponding ratio ($\delta O^{-}/\delta N^{-}$) for the $-N=S=O$ group was 8.7.

2. X-ray Crystallographic Measurements

X-ray crystallographic analysis has shown¹⁷¹ that the N-(thiosulfiny1)amine **205** has a *2* configuration in the crystalline state. The N-S and S-S bond lengths determined for **205** were 1.543 and 1.901 **A,** respectively. Similar results were obtained for the unusual [(thiosulfinyl)amino] thio compound 221, prepared by reac-

tion of the N-unsubstituted piperidine with disulfur dichloride followed by treatment with aqueous ammonia.^{172a} The measured bond lengths for the N_1-S_1 and **S1-S2** bonds in **221** were 1.569 and 1.912 **A,** respectively. These are significantly shorter than the reported N-S (1.60-1.76 **A)173** and S-S (2.0-2.1 **A)173** single bond lengths. The $-N=S-S$ bond angle was determined^{172a} to be 114.9' as compared to 120.4' and 117.0' for *O=* $S=0^{174}$ and $-N=S=N-.1^{75}$ respectively. This smaller angle was attributed 172a to a weaker repulsive force between N_1 and S_2 in 221 than those between the two O or N atoms in SO_2 or $-N=S=N-$.

The N-(thiosulfiny1)amine **223,** prepared by the ac-

tion of heat on 222, gave analogous results.^{172b} The measured^{172b} bond lengths for the N_3-S_2 and S_2-S_1 bonds in 223 were 1.592 and 1.908 Å, respectively, and the $-N=$ S=S bond angle was shown¹⁷²⁶ to be 111.4°

3. Spectroscopic Measurements

a. Infrared Spectra. The infrared spectra of various N-(thiosulfiny1)anilines have been reported (Table **V).** No assignment of frequency values to particular vibrational modes in the molecules has been made.

TABLE V

	compd phase	IR spectrum, cm^{-1}	ref
200	nuiol	1605, 1535, 1315, 1290, 1180, 158 830, 680	
205	K Br	2950, 1590, 1455, 1360, 1222, 1169, 995, 870, 690, 650, 620	160
207 216 _b	neat neat (film)	1595, 1360, 1128, 1000 2990, 2950, 1570, 1460, 1390, 1205, 1160, 1090, 995, 795,	160b 165
		690	

b. Ultraviolet Spectra. The normally weak absorption around 530 nm in the ultraviolet spectra of **N-(thiosulfiny1)anilines** (Table VI) has been attributed160 to the (thiosulfiny1)amino moiety.

c. Nuclear Magnetic Resonance (NMR) Spectra. The factors influencing the equilibrium between **203** and **204** in solution were studied by using variable temperature nuclear magnetic resonance spectrosco- ~y.l'~ The interconversion between **203** and **204** was slow enough to show two distinct sets of NMR signals due to the two tautomers. Accordingly equilibrium constants were calculated on the basis of the NMR signal intensities for the two olefinic protons of **204** *(6* 5.87 and 6.39, each d, $J = 2Hz$, 1 H) and the two aromatic protons of 203 $[5 \t 7.34, s, 2 H]$.¹⁷⁶ In the temperature range 11-63 \degree C the predominant isomer was **204** but the relative amount of **203** increased substantially with increased temperature. From the calculated equilibrium constant $(K = [204]/[203])$, at different temperatures, $-\Delta G$ values (ranging from 1.68 to 1.09) kcal mol⁻¹ at 11 °C to 63 °C, respectively) were obtained. These values permitted estimates for the heat of isomerization $(\Delta H = -4.9 \text{ kcal mol}^{-1})$ and the entropy of isomerization ($\Delta S = -11.3$ cal mol⁻¹ deg⁻¹) to be made.

The exothermicity of this unusual ring formation **(203** of isomerization $(\Delta S = -11.3 \text{ cal mol}^{-1} \text{ deg}^{-1})$ to be made.
The exothermicity of this unusual ring formation (203
 \rightarrow 204) was attributed¹⁷⁶ to both the decreased aro-
matisity assumed by staria congration and the consid maticity caused by steric congestion and the considerable reactivity of the (thiosulfiny1)amino group toward a double bond (see section VIIIC7). No such ring formation, in the case of 2,4-di-tert-butyl-6-methyl-N- (thiosulfiny1)aniline **(205),** was observed by NMR spectroscopy over a temperature range of -102 to 70 °C. The variation of the equilibrium constant $(K =$ [204]/ [203]) with polarity of solvent (hexane to acetonitrile) was also investigated by NMR spectroscopy.¹⁷⁶ The increase in *K* with increasing polarity of solvent suggested that the dipole moment of **204** was larger than that for **203,** a result in agreement with the measured dipole moment for **204** (ca. 2.9 **D)177** and the estimated dipole moment for **203** [assumed similar to the value for **205** (1.51 D)168].

C. **Chemical Properties of** *N-(* **Thlosulflnyl**)anilines

1. Thermolysis

Pyrolysis of **4-(dimethylamino)-N-(thiosulfinyl)** aniline **(200)** at 200 "C gave sulfur and the corresponding azo compound,¹⁵⁸ whereas thermolysis of N-tert-butyl- and **N-(2,4,6-tribromophenyl)-N-(thio**sulfiny1)amines **(214a** and **214c,** respectively) afforded the corresponding sulfur diimides $(-N=S=N-1^{165}$ Sulfur diimides are known, however, to form azo compounds thermally.167

SCHEME XI11

SCHEME XIV

The formation of **224 was** rationalized in terms of an initial 1,5 hydrogen shift.¹⁶² The subsequent mechanistic pathway is unclear, although two possible routes (Schemes XIII, XIV) have been suggested.162 The former seems the most likely by analogy with the mechanism established for the thermal conversion of

2,4-di-tert-butyl-6-methylnitrosobenzene to a benzisoxazole via an initial 1,5 hydrogen shift.^{178,179} The relative stabilities of the *N-(* thiosulfiny1)anilines **205** and **207 (205** > **207)** can thus be explained by the formation of a more stable intermediate **(226)** (cf. **225)** from 2,4-di-tert-butyl-6-isopropyl-N-(thiosulfinyl)aniline **(207).162b**

The formation of the sulfur diimide **209,** by treatment of **2,5-di-tert-butylaniline (208)** with disulfur dichloride (see section VIIIA), was rationalized^{162b} in terms of thermal decomposition of the initially formed, presumably unstable, N-(thiosulfinyl)aniline **227** to the reactive **thionitroso** compound **228** and subsequent dimerization, or reaction with excess **227,** followed by loss of one or more sulfur atoms (Scheme XV).

The thermolysis of **205,** yielding **224** and **210** may **also** be explained¹⁶² in terms of initial decomposition to a thionitroso compound, conversion to a sulfur diimide intermediate **212,** and subsequent disproportionation of the **latter, also** via a 1,5 hydrogen **shift** (Scheme XVI).

However, mechanistic routes involving the intermediacy of a thionitroso compound cannot explain the fact that the 6-methyl derivative **205** is more stable than the 6-isopropyl derivative **207.**

Unexpectedly, thermolysis of **203,** under nitrogen, gave the oxidized product **229 as** well **as** the aniline **211** and sulfur.162b

Thermolysis of **203** under a stream of oxygen afforded a complex mixture of products from which **211,230,** and **231** were isolated.

An ESR signal $(a_N = 82 \text{ G}, g = 2.008)$ was obtained on thermolysis of **203** for *5* min at 110 "C in degassed benzene. This peak was ascribed^{162b} to a nitrogencentered radical **232** by analogy with results obtained

for other sulfur-containing nitrogen-centered radi**cals.180-182**

A pathway leading to the formation of **229** has been proposed.^{162b} but with the present experimental data the mechanism remains unclear.

2. Photolysis

Irradiation of 205 through pyrex, with light from a

hotolysis

\naddiation of 205 through pyrex, with light fro

\n
$$
205 \xrightarrow{h\nu} ArNH_2 + Ar-N=S-N-Ar + S_8
$$

\n
$$
210
$$

\nAr = 2,4-(t-Bu)₂-6-MeC₆H₂

medium-pressure mercury lamp afforded the aniline **210,** sulfur diimide **212,** and sulfur in various yields, depending on concentration, solvent, and irradiation time.¹⁶²

The progress of the reaction could be followed by observation of the changes in the electronic spectrum on irradiation of **205** in an EPA matrix at **77** K. A large increase in absorption at 473 nm ($\epsilon \sim 15000$) was detected, and this was postulated^{162b} as arising via the presence of one of three species **(233-235).** A nitrenoid intermediate was eliminated on the basis of the known absorption characteristics $(\geq 400 \text{ nm}, \epsilon \text{ a few hundred})$ of such a species.¹⁸³ Similarly sulfur atom or its oli-

gomers could not be responsible for the 473-nm peak since their absorptions are below 420 nm .¹⁸⁴

The aniline **210** may arise from photodecomposition of the sulfur diimide **212** since irradiation of **212** gave only **210** and unchanged **212.162**

When the equilibrium mixture of **203** and **204** was

hu **²⁰³*** **204** - ArNH,+ Ar-N=S=N-Ar **211 213** Ar = 2,4,6-(t-B~)&~H,-

irradiated in pentane a complex mixture arose, from which the aniline **211** and the sulfur diimide **213** were isolated.162

3. Oxidation

Reaction of the (thiosulfiny1)aniline **205** with *m*chloroperoxybenzoic acid (MCPBA) (1 equiv.) gave the sulfinylaniline **236,** the aniline **210,** and unreacted starting material.185 $\begin{array}{l|l} \text{ybenzocic acid (MCPBA)} \ (\text{ine 236, the aniline 210}\ \text{terial.}^{185} & & \end{array}$

The aniline **210** is known to react with MCPBA to form 2,4-di-tert-butyl-6-methylnitrosobenzene,¹⁸⁶ and since this product was not isolated from the reaction mixture it was concluded185 that the amine **210** was formed on workup.

Treatment of the equilibrium mixture **(203,204)** with MCPBA in dichloromethane afforded three isolable products $(237-239)$, ^{185, 187} which were characterized by

spectroscopic, chemical, and, in one case,¹⁸⁸ X-ray crystallographic analyses.

Thermal decomposition of **237** gave both **238** and **239** as well as 2,4,6-tri-tert-butylaniline. This unusual transformation to **238** and **239** was, apparently,185J87 the first direct observation of oxygen transfer in thiolsulfinate type compounds.^{189,190} The formation of products 238 and 239 was rationalized^{185,187} in terms of a single intermediate **240** from which sulfur extrusion would afford **239,** and, more interestingly, an initial cyclization to 241 followed by a retro-ene type transformation could yield **238.**

Although the bicyclic compound **241** could not be isolated, distinct spectral evidence for ita intermediacy was obtained.^{185,187} The formation of 241 was ration-

alized¹⁸⁵ in terms of two possible mechanistic pathways: via oxygen migration from **242** or **sulfur** migration from **243.** Available experimental evidence does not allow for distinction between these two possibilities.

4. Reduction

Barton and Robson¹⁵⁸ have briefly examined the reduction of the (thiosulfinyl)amino group by treatment of *p-* (dimethylamino)-N- (thiosulfiiy1)aniline **(200)** with sodium borohydride and hydrogen sulfide. The product of reduction, viz. N,N-dimethyl-p-phenylenediamine (also obtained by acid hydrolysis) was identified as its benzoyl derivative, **N'-benzoyl-N,N-dimethyl-p**phenylenediamine.

A trace of hydrogen sulfide was detected (as PbS) during the thermolysis of **2,4-di-tert-butyl-6-methyl-**N-(thiosulfiny1)aniline **(205)162** [see section VIIIC], and it was proposed¹⁶² that the aniline product 210 was thus formed by **H2S** reduction of **205.** The likelihood of such a reaction was confirmed in a separate experiment.

5. *Reaction with Electrophiles*

The N-(thiosulfiny1)amines **216** [see section VIIIA]

On with Electrophiles

\n(thiosulfinyl)amines 216 [see sec216a-c
$$
\xrightarrow{2Cl_2}
$$
 RN=SCl₂ + SCl₂ 244

a, R = t-Bu; **b,** R = (CH,),C(CN); **c,** R = 2,4,6-Br3C6Hz

reacted rapidly with chlorine gas at room temperature, to form the appropriate N-substituted dichlorosulfimides **244.165 Braudy with chiorine gas at room temperature the appropriate N-substituted dichle 44.¹⁶⁵

Br**₂ + S₂Br₂ + S₂Br₂ 245

A ready reaction of compounds **216** with bromine was

$$
216a \xrightarrow{\text{Br}_2} (\text{CH}_3)_3\text{CN} = \text{SBr}_2 + \text{S}_2\text{Br}_2
$$

$$
245
$$

also observed,¹⁶⁵ but only N-tert-butyl-S,S-dibromosulfimide $(245)^{191}$ could be isolated in pure form.

ds Containing the S=8 Bond
tinyly, when the N-(thiosulfinyl)aniline:
ArN=S=S
$$
\xrightarrow{Br_2}
$$
 ArN=S=NAr + S₈
205 $\xrightarrow{212}$ Ar = 2.4-t-Bu₂-6-MeC₆H₂

treated with an equimolar amount of bromine, at room temperature, the products were the sulfur diimide **212** and elemental sulfur,¹⁸⁵ possibly via an intermediate thionitroso compound **233.185** Other electrophilic reagents such as trimethylsilyl chloride and trimethyloxonium tetrafluoroborate did not react with **205** at room temperature.¹⁸⁵

6. Reaction with Nucleophiles

a. With Phosphines and Phosphites. Treatment of 205 with triphenylphosphine gave,¹⁹² even at -78 °C, the sulfur diimide **212** and the iminophosphorane **246**

in 21% and 66% yield, respectively.¹⁹³ The reaction of the equilibrium mixture **(203, 204)** with triphenyl-

$$
246
$$
\nin 21% and 66% yield, respectively.¹⁹³ The reaction of the equilibrium mixture (203, 204) with triphenyl-
\n
$$
203 = 204 \frac{Ph_3P}{ArNH_2} + ArN = S = NAr + ArN = S = 0
$$
\n
$$
211
$$
\n
$$
Ar = 2,4,6-t-Bu_3C_6H_2
$$

phosphine, under similar conditions, afforded¹⁹² no iminophosphorane product but instead the aniline (211) , sulfur diimide **(213),** and sulfinylaniline **(239)** derivatives in 38.6% , 34.4% , and 11.0% yield, respectively.¹⁹³

Repetition of the previous experiment, under a stream of oxygen, gave only **211** and **239** in 35.4% and 38.6% yield, respectively. The absence of the sulfur diimide **213** in the product mixture led to the conclusion¹⁹² that 211 and 239 were produced from the unstable (thionitros0)benzene **(247)** intermediate, which could be trapped.

A nitrenoid intermediate was excluded¹⁹² by the absence, from the reaction mixture, of products expected for such a species by analogy with the known¹⁹⁴ nitrene

producing reaction of the corresponding nitroso compounds with trialkylphosphines.

The phosphoramidate **248** was formed slowly upon reaction of the equilibrium mixture **203,204** with excess trimethyl phosphite.¹⁹²

b. With Organometallic Reagents. Treatment of the N-(thiosulfiny1)amine **205** with an equimolar **CH3MgI Or**

\n Chemical Reviews, 1982, Vol. 82, No. 4 353
\n producing reaction of the corresponding nitrogen
\n pounds with trialkylphosphines.
\n The phosphoramide 248 was formed slowly upon reaction of the equilibrium mixture 203, 204 with excess
\n trimethyl phosphate.¹⁹²
\n**b. With Organizatione** 205 with an equipment of the N-(thiosulfinyl)amine 205 with an equipment of the N-(thiosulfinyl)amine 205 with an equipment of
$$
Ar-N=S=S-S
$$

\n $\frac{CH_3Mgl \text{ or } H_2 + Ar-N=S=N-Ar}{210}$
\n $Ar = 2.4-t-Bu_2-6-MeC_6H_2$ \n

amount of methylmagnesium iodide or butyllithium gave the aniline **210** and the sulfur diimide **212.1g2** With excess isopropylmagnesium bromide only the aniline **210** was isolated. Ar = 2,4-t-Bu₂-6-MeC₆H₂

of methylmagnesium iodide or but

miline 210 and the sulfur diimide 212

ppropylmagnesium bromide only th

solated.

us (K.T.)¹⁹⁵ has recently investigate

205 with excess phenylmagnesium

One of us $(K.T.)^{195}$ has recently investigated the reaction of **205** with excess phenylmagnesium bromide,

$$
205 \xrightarrow{\text{PhMgBr}} 210 + 212 + \text{PhSSPh}
$$

249

confirming the formation of the aniline **210** and sulfur diimide **212.** The disulfide **249** (presumably from reaction of excess Grignard with sulfur) and other, as yet unidentified, minor products were also formed.

c. With an Enamine. The aniline **210** was obtained by treatment of 205 with 1-(1-pyrrolidinyl)cyclo-

$$
205 \xrightarrow{1-(1-pyrrolidinyl)cyclopentene} 210 (57.7\%)
$$

pentene.¹⁹² The expected 1:1 cycloadduct (see section VIIIC7) could not be detected, even at -78 °C.

d. With Amines. The aniline 210 was also the sole
\n
$$
\frac{RNH_2}{\text{or pyrroidine}} \cdot 210
$$
\n
$$
R = n-Bu, t-Bu, 1-adamantyl
$$

isolable product from the reaction of **205** with various primary and secondary alkyl amines.¹⁹² Even after 1 week, no reaction was observed between aniline (the only aromatic amine utilized) and **205.**

7. Cycloaddition Reactions

(Thiosulfiny1)amine **200** reacted with both norbornadiene and cyclopentadiene to give crystalline 1:l adducts assigned the structures **250** and **251** or **252,** respectively.¹⁵⁸

More recently an intramolecular cycloaddition of an intermediate (thiosulfiny1)amine **254** to a C=N bond was proposed¹⁹⁶ to explain the formation of a thione 256 from the reaction of a hydrazone **253** with disulfur dichloride.

Interestingly, when hexafluoroacetone hydrazone

(257) was treated with disulfur dichloride at -23 °C a
\n(CF₃)₂C=NNH₂
$$
\frac{s_2c_1}{2}
$$
 [(CF₃)₂C=N-M=SS=S] \rightarrow
\n257\n
$$
[(CF_3)_2C=S=S] \stackrel{S_8}{\rightarrow} \frac{CF_3}{CF_3} \stackrel{S-S}{\rightarrow} S
$$
\n258

low yield of the hexathiacycloheptane derivative **259** was obtained,^{196b} presumably via reaction of an intermediate thiosulfine **258** with sulfur.

Similarly, treatment of **N,N-bis(trimethylsily1)** sulfonamides **260** with disulfur dichloride has been

shown¹⁹⁷ to yield the eight-membered cyclic systems **(261).**

The intramolecular cyclization of the $-N=S=S$ group to a multiple bond (cf. $254 \rightarrow 255$) may well be a general phenomenon since such a reaction has been postulated to explain the formation of nitriles **263** from

the reaction **of** thioamides **262** with dialkoxy disulfides **(ROSSOR)159** and the formation of 5H-1,2,3-dithiazoles **265** from β -keto enamines **264** and S_2Cl_2 .

IX . *References*

- (1) R. D. Baechler and S. K. Daley, *Tetrahedron Lett.,* 101 (1978).
- (2) (a) 0. Foss, *Acta Chem. Scand.,* 4, 404 (1950). (b) 0. Foss, "Organic Sulfur Compounds", Vol. 1, N. Kharasch, Ed., Pergamon Press, New York, 1961, pp 75-77. (c) A. J. Parker

and N. Kharasch, *Chem. Reu.,* 59, 583 (1959). (d) R. Rah-man, S. Safe, and A. Ta lor, Q. *Rev., Chem. SOC.,* 24, 208 (1970). (e) L. Schotte and)G. Bergson, *J. Polym. Sci.,* 45, 261 (1960).

- (3) For reviews on mustard gas, see: K. E. Jackson, *Chem. Reu.,* 15, 425 (1934); E. E. Reid, "Organic Chemistry of Bivalent Sulfur", Vol. 11, Chemical Publication Company, Inc., 1960,
- p 237. (4) R. Macy, G. N. Jarman, A. Morrison, and E. E. Reid, *Science*
- *(Washington, D.C.), 106, 355 (1947).*

(5) A. G. Green, *J. Soc. Chem. Ind., London, 38, 469R (1919).*

(6) F. G. Mann, W. J. Pope, and R. H. Vernon, *J. Chem. Soc.,* 119, 634 (1921).
-
- (7) G. M. Bennett, J. *Chem. SOC.,* 119, 418 (1921). (8) R. Pernot, *Ann. Chim. (Paris),* 1,626 (1946); *Chem. Abstr.,*
- 41, 19891 (1947). (9) F. C. Fuson, C. C. Price, D. M. Burness, R. E. Foster, W. R. Hatchard, and R. D. Lipscomb, *J. Org. Chem.,* 11,487,505 (1946)
- (10) I. M. Dawson, A. M. Mathieson, and J. M. Robertson, *J.*
- *Chem.* SOC., 322 (1948). (11) I. M. Dawson, and J. M. Robertson, *J. Chem. SOC.,* 1256 (1948).
- (12) J. Donohue, *J. Am. Chem.* SOC., **72,** 2701 (1950). (13) A. M. Kinnear and J. Harley-Mason, *J. SOC. Chem. Ind.*
- *(London).* 67. 107 (1948): *Chem. Abstr..* 42. 7246i (1948). (14) **K.** G. Naik, *3. Cheh. So;.,* 119, 1166 (1921).'
-
- (15) K. G. Naik, *J. Chem.* **SOC.,** 119, 379 (1921). (16) K. G. Naik and C. S. Patel, *Q. J. Indian Chem.* SOC., 1, 27 (1924).
- (17) K. G. Naik and Y. N. Byat, **Q.** *J. Indian Chem.* SOC., 4, 525 (1927)
- (18) G. A. R. Brandt, H. J. Emeleus, and R. N. Haszeldine, *J. Chem. SOC.,* 2198 (1952); R. N. Haszeldine, *Angew. Chem.,* 66, 693 (1954).
-
- (19) H. J. M. Brown, *Trans. Faraday* SOC., 50, 452 (1954). (20) G. A. R. Brandt, H. J. Emeleus, and R. N. Haszeldine, J. *Chem.* **SOC.,** 2549 (1952).
- (21) H. Wolff and A. Ott, *Chem. Ber.,* 36, 3721 (1903). (22) A. Angeli and N. M ani, *Gazz. Chim. Ital.,* 24,342 (1894).
- (23) J. E. Baer and M. Carmack, *J. Am. Chem. Soc.*, 71, 1215 (1949).
- (24) C. C. Woodrow, M. Carmack, and J. G. Miller, *J. Chem. Phys.,* 19,951 (1951).
-
- (25) S. Bezzi and P. Lanza, *Gazz. Chim. Ital.,* 80, 180 (1950). (26) J. S. Thomas and A. Rule, *J. Chem. SOC.,* 111, 1063 (1917).
-
- (27) G. C. Chakravarti, *J. Chem. SOC.,* 123, 964 (1923). (28) B. Holmberg, *Justus Liebigs Ann. Chem.,* 359, 81 (1908). (29) A. Baroni, *Atti Accad. Naz. Lincei, C1. Sci. Fis., Mat. Nat.,*
- *Rend.,* 14, 28 (1931); *Chem. Abstr.,* 26, 1896 (1932).
- (30) A. Baroni, *Atti Accad. Naz. Lincei, C1. Sci. Fis., Mat. Nut., Rend.,* 11, 905 (1930); *Chem. Abstr.,* 25, 69 (1931).
- (31) G. R. Levi and **A.** Baroni, *Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend.,* 9, 772 (1929); *Chem. Abstr.,* 23, 4927 11929). ~___.,
- (32) E. N. Gur'yanova, Ya. K. Syrkin, and L. S. Kuzina, *Dokl. Akad. Nauk SSSR,* 86, 107 (1952); *Chem. Abstr.,* 47, 1475f (1953).
- (33) E. H. Farmer and F. W. Shipley, *J. Chem. SOC.,* 1519 (1947).
-
- (34) G. F. Bloomfield, *J. Chem. SOC.,* 1547 (1947). (35) D. P. Stevenson and J. Y. Beach, *J. Am. Chem.* SOC., 60,2872
-
-
- (1938).

(36) K. J. Palmer, J. Am. Chem. Soc., 60, 2360 (1938).

(37) G. Scheibe and O. Stoll, Chem. Ber., 71, 1571 (1938).

(38) C. J. Marsden, R. D. Brown, and P. D. Godfrey, J. Chem.

Soc., Chem. Commun., 399 (1979).
- (39) A. Fava and A. Iliceto, *Ann. Chim. (Rome),* 43, 509 (1953); *Chem. Abstr..* 48.6181d (1954).
- (40) A. Fava and'A. Iliceto, *kic. Sci.,* 22, 1945 (1952); *Chem. Abstr.,* **47,** 5774b (1953). (41) J. R. Katz, *Trans. Faraday* SOC., 32, 77 (1936).
-
- (42) J. C. Patrick, *Trans. Faraday SOC.,* 32, 347 (1936).
-
-
- (43) F. Feher, *Angew. Chem.,* 67, 337 (1955). (44) S. Bezzi, *Gazz. Chim. Ztal.,* 65, 693, 703 (1935). (45) A. H. Song, *J. Chem. SOC.,* 485 (1934), and loc. cit.
- (46) L. M. Kushner, G. Gorin, and C. P. Smyth, *J. Am. Chem.* SOC., 72, 477 (1950).
- (47) H. Gerding and R. Westrik, *Recl. Trav. Chim. Pays-Bas,* 61, 412 (1942).
- (48) J. Donohue and V. Schomaker, *J. Chem. Phys.,* 16,92 (1947). (49) G. N. Pai, *Indian J. Phys.,* 9, 231 (1935); *Chem. Abstr.,* 29,
- 4265 (1935).
A. Clow and J. M. C. Thompson, Trans. Faraday Soc., 33,
- (50) A. Clow and J. M. C. Thompson, *Trans. Faraday* SOC., **33,** 894 (1937).
-
- (51) H. P. Koch, *J. Chem. Soc.*, 1949, 394.
(52) D. S. Breslow and H. Skolnik, "Multi-sulfur and Sulfur and
Oxygen Five- and Six-Membered Heterocycles", Interscience,
- New York, 1966.

(53) J. A. Baltrop, P. M. Hayes, and M. Calvin, *J. Am. Chem.*
 Soc., 76, 4348 (1954).
- F. G. Mann and W. C. Pope, *J. Chem.* Soc., **123,1172 (1923).**
- H. E. Westlake, M. G. Mayberry, M. H. Whitlock, J. R. West, and G. J. Haddad, *J. Am. Chem. Soc.*, **68**, 748 (1946).
B. P. Kaufmann, *Chem. Ber.*, 70, 2519 (1937).
-
- H. J. Backer and A. F. Tamsma, *Recl. Trau. Chim. Pays-Bas,*
- **57, 1183 (1938).** H. J. Backer and N. Evenhuis, *Red. Trau. Chim. Pays-Bas,* **56, 129, 174 (1937).**
- (59)
- L. Schotte, *Ark. Kemi,* **9, 309, 361 (1956).** G. Hofle and J. E. Baldwin, J. *Am. Chem. SOC.,* **93, 6307** (60)
- T. W. Campbell, J. Org. Chem., 22, 1029 (1957) (61)
-
- T. W. Campbell, J. Org. Chem., 22, 1029 (1957).
G. Goor and M. Anteunis, *Synthesis*, 329 (1975).
D. Rankov, A. Popov, and S. Ivanov, *Symp. Pap.—IUPAC*
Int. Symp. Chem. Nat. Prod., 11th 1978, 2, 223.
T. Higashihara, K. Sa
-
-
- M. Schmidt, Angew. Chem., Int. Ed. Engl., 12, 445 (1973).
(a) B. M. Chadwick, J. M. Grzybowski, and D. A. Long, J.
Mol. Struct., 48, 139 (1978). (b) M. Feuerhahn and G. Vahl,
Chem. Phys. Lett., 65, 322 (1979). (c) C. J. Ma
- **399 (1979).** (68)
- (a) F. Von Seel, *Chimia,* **22,79 (1968).** (b) R. L. Kuczkowski, *J. Am. Chem. SOC.,* **86, 3617 (1964).** (c) F. Seel and R. Budenz, *Chem. Ber.,* **98, 251 (1965).** (d) R. D. Brown, F. R. Burden, and *G.* P. Pez, *J. Chem. SOC., Chem. Commun.,* **277 (1965).**
- (69) (a) P. W. Schenk and R. Steudel, *Angew. Chem., Znt. Ed. Engl.,* **4,402 (1965).** (b) P. W. Schenk and R. Steudel, *ibid.,* **2,685 (1963).** (c) R. M. Dodson, V. Srinivasan, K. S. Sharma, and R. F. Sauers, *J. Org. Chem.,* **37, 2367 (1972).** (d) **A.** R. V. Murthy, R. N. Kutty, and D. K. Sharma, *Znt. J. Sulfur*
- *Chem.,* **6B, 161 (1972). 0.** Foss and A. Hordvik, *Acta Chem. Scand.,* **11,1443 (1957).** (70)
-
- (a) R. Steudel, Z. Naturforsch., 27b, 469 (1972). (b) O. Foss,
Adv. Inorg. Chem. Radiochem., 2, 237 (1960).
(a) A. Clow, H. M. Kirton, and J. M. C. Thompson, Trans.
Faraday Soc., 36, 1018 (1940). (b) L. A. Wiles and Z. S. Ariyan, *Chem. Znd. (London),* **2102 (1962).** D. Martinetz, *2. Chem.,* **20, 332 (1980).**
-
- G. Holzmann, M. Feuerhahn, R. Minkwitz, and G. Vahl, *J. Chem. Res. Synop.,* **71 (1980).** *S.* Safe and A. Taylor, *J. Chem.* SOC. *C,* **432 (1970).** T. Sat0 and T. Hino, *Tetrahedron,* **32, 507 (19761,** and loc.
-
-
- (77) C. G. Moore and B. R. Trego, Tetrahedron, 18, 205 (1962); C. G. Moore and B. R. Trego, *Tetrahedron,* **18, 205 (1962);**
-
- 19, 1251 (1963).
D. N. Harpp, D. K. Ash, and R. A. Smith, *J. Org. Chem.*, 45, 5155 (1980), and loc. cit.
(a) J. M. D. Herscheid, M. W. Tijhuis, J. H. Noordik, and H.
(a) J. M. D. Herscheid, M. W. Tijhuis, J. H. Noordik, **(1971). (d;** T. Mukaiyama and H. Takei, *Top. Phosphorus Chem.,* **8, 614 (1976).** (e) D. N. Harpp, J. Adams, J. G. Gleason, D. Mullins, and K. Steliou, *Tetrahedron Lett.*, 3989
(1978). (f) D. N. Harpp and D. K. Ash, J. Chem. Soc., Chem.
Commun., 811 (1970). (g) D. N. Harpp and R. A. Smith, J.
Org. Chem., 44, 4140 (1979). (h) S. Safe a 1030 (1968). (k) D. Brewer, R. Řahman, S. Šafe, and A.
Taylor, J. Chem. Soc., Chem. Commun., 1571 (1968). (l) R.
Rahman, S. Safe and A. Taylor, J. Chem. Soc. C, 1665 (1969). D. Kurz, *Z. Naturforsch. B: Anorg. Chem.,* b *rg. Chem.,* **23,**
- T. Wieland and H. Schwahn, *Chem. Ber.,* **89, 422 (1956).** G. A. R. Brandt, H. J. Emeleus, and R. N. Haszeldine, *J.*
-
- *Chem.* **SOC., 2198 (1952).** R. Steudel, *2. Anorg. Allg. Chem.,* **361, 180 (1968).** L. Brewer, G. D. Brabson, and B. Meyer, *J. Chem. Phys.,* **42, 1385 (1965).**
- The branched sulfur form had been previously discussed for the closely related bis(4-nitrophenyl) disulfide: (a) H.
Wuckel and H. Wojahn, *Pharmz. Zentralhalle*, 87, 97 (1948);
(b) R. Blanksma, *Recl. Trau. Chim. Pays-Bas*, 20, 121 (1901).
(a) B. J. Stepanov, V. Ya. Rodionov, and
- (85) *Dokl. Nauchn. Sess. Khim. Tekhnol. Org. Soedin. Sery Sernistykh Neftei 13th,* **272 (1974);** *Chem. Abstr.,* **85, 495**
- **(1976).** N. N. Vorozhtsov and V. V. Kozlov, *Zh. Obshch. Khim.,* **2, 939 (1932).** . _. \-- --, (a) D. Barnard, T. H. Houseman, M. Porter, and B. K. Tidd,
- *J. Chem. SOC., Chem. Commun.,* **371 (1969).** (b) B. K. Tidd, *Znt. J. Sulfur Chem. C,* **6, 101 (1971).** (a) T. L. Pickering, K. J. Saunders, and **A.** V. Tobolsky, *J.*
- *Am. Chem.* **SOC., 89, 2364 (1967).** (b) I. Kende, T. L. Pick-

ering, and A. V. Tobolsky, *J. Am. Chem. SOC.,* **87, 5582 (1965).**

- (89) R. Tang and K. Mislow, J. Am. Chem. Soc., 92, 2100 (1970).
(90) F. Challenger and D. Greenwood, J. Chem. Soc., 26 (1950).
(91) S. W. Benson, Chem. Rev., 78, 23 (1978).
	-
	-
- **(92)** "JANAF Thermochemical Tables", Dow Chemical Co., Midland, MI, **1966,** plus later supplements to **1976.**
- **(93)** C. **F.** Cdlis and M. F. R. Mulcahy, *Combust. Flame,* **18, 225 (1975)** , - . , .
- (94) "Selected Values of Chemical Thermodynamic Properties",
Technical Note 270-3, U.S. Government Printing Office,
Washington, D.C., 1968.
(95) F. Feher and G. Winkhaus, Z. Anorg. Chem., 292, 210 (1957).
- **(96)** R. **D.** Baechler, J. P. Hummel, and K. Mislow, *J. Am. Chem. SOC.,* **95, 4442 (1973).**
- **(97)** J. Drabowicz, T. Numata, and S. Oae, *Org. Prep. Proced. Znt.,* **9, 63 (1977).**
- **(98)** R. Appel and W. Buchner, *Chem. Ber.,* **95, 855 (1962).**
- (99) (a) M. Mikolajczyk, *Chem. Ind. (London*), 2059 (1966). (b)
M. Mikolajczyk, *Angew. Chem.*, 78, 393 (1966). (c) T. J.
Wallace and H. A. Weiss, *Chem. Ind. (London*), 1558 (1966). (d) M. Mikolajczyk and M. Para, *Bull. Acad. Pol. Sci.,* **16,295 (1968).** (e) M. Mikolajczyk and M. Para, *J. Chem. SOC., Chem. Commun.,* **1192 (1969). (f)** S. Oae, T. Yagihara, and T. Okabe, *Tetrahedron,* **28,3203, (1972).** (9) **A.** Nakanishi and S. Oae, *Chem. Znd. (London),* **960 (1971).** (h) S. Oae, **A.**
- Nakanishi, and N. Tsujimoto, *Tetrahedron*, 28, 2981 (1972).
(100) (a) T. J. Wallace and J. J. Mahon, J. Org. Chem., 30, 1502
(1965). (b) J. B. Jones and D. C. Wigfield, Can. J. Chem., 44, **2517 (1966).** (c) K. Balenovic and N. Bregant. *Chem. Znd.* **"I** *(London),* **1577'(1964).**
- **(101)** (a) M. Mikolajczyk and J. Luczak, *Chem. Znd. (London),* **76 (1972).** (b) M. Mikolajczyk and J. Luczak, *Synthesis,* **491** *I*,-.".* **(1514).**
- **(102)** (a) M. Mikolajczyk and J. Luczak, *Chem. Znd. (London),* **701 (1974).** (b) R. Luckenbach, *Synthesis,* **307 (1973).** (c) M. Mikolajczyk and J. Luczak, *ibid.,* **114 (1974).** (d) R. Luckenbach and M. Kern, *Chem. Ber.,* **108, 3533 (1975).**
- **(103)** S. Furumoto, *Yuki Gosei Kagaku Kyokai Shi,* **31, 1038 (1973);** *Chem. Abstr.,* **81, 135424j (1974).** A. Nakanishi and S. Oae, *Chem. Znd. (London),* **960 (1971).**
- (104) (a) A. Nakanishi and S. Oae, Chem. Ind. (London), 960 (1971). (b) S. Oae, A. Nakanishi, and N. Tsujimoto, $Tetrahedron$, 28, 2981 (1972). (c) S. Oae, T. Yagihara, and T. Okake, ibid., 28, 3203 (1972). (c) S. Oae, T. Yagih
- *Lett.,* **3735 (1973).**
-
- **(106)** J. Drabowicz and S. Oae. *Chem. Lett..* **767 (1977). (107)** H. S. D. Soysa and W. **P.** Weber, *Tetrahedron 'Lett.,* **235 (1978).**
- **(108)** J. Balint, M. Rakosi, and R. Bognar, *Phosphorus Sulfur,* **6,**
- (109) (a) R. D. Baechler, S. K. Daley, B. Daly, and K. McGlynn,
 T etrahedron Lett., 105 (1978). (b) R. D. Baechler, L. J. San

Filippo, and A. Schroll, *ibid.*, 22, 5247 (1981).

(110) R. G. Micetich, *Tetrahedron Lett.*
-
-
- (111) R. C. Cookson and P. J. Parsons, J. Chem. Soc., Chem.
Commun., 822 (1978).
(112) (a) I. W. J. Still, S. K. Hasan, and K. Turnbull, Synthesis, 468 (1977). (b) I. W. J. Still, S. K. Hasan and K. Turnbull, Can. J. Chem., **56**, 1423 (1978).

(113) Baechler^{1,109a} could not observe (NMR evidence) thiosulf-
- oxide intermediates when sulfoxides were allowed to react with P_4S_{10} , even at temperatures considerably below 0 °C.
- **(114)** It was apparently important to isolate the disulfides immediately from the reaction mixture; on standing no disulfides
were observed.
- (115) **J. B. Rasmussen, K. A. Jorgensen, and S.-O. Lawesson,** *Bull.* Soc. *Chim. Belg.*, **87**, 307 (1978).

(116) The much smaller difference in dipole moment between di-
- methyl sulfone and dimethyl sulfoxide **(0.35** D) than between dimethyl sulfoxide and dimethyl sulfide **(2.45** D) may account for the lower nucleophilicity of sulfone oxygen atoms.
(117) I. W. J. Still and K. Turnbull, *Synthesis*, 540 (1978).
(118) I. W. J. Still, J. N. Reed, and K. Turnbull, *Tetrahedron Lett.*,
-
- **1481 (1979).**
- **(119)** T. Li Ju, J. L. Kice, and C. G. Venier, J. *Org. Chem.,* **44,610**
-
- (1979).

(120) R. L. Kuczkowski, J. Am. Chem. Soc., 85, 2028, 3047 (1963).

(121) (a) Q. E. Thompson, M. M. Crutchfield, and M. W. Dietrich,

J. Am. Chem. Soc., 86, 3891 (1964). (b) Q. E. Thompson, M.

M. Crutchfield, M.
-
-
-
- SOC., **76, 1211 (1954). (123)** F. Lengfeld, *Chem. Ber.,* **28, 449 (1895). (124) A.** Meuwsen, *Chem. Ber.,* **68, 121 (1935); 69, 935 (1936).**
- **(125)** (a) H. Stamm and H. Wintzer, *Chem. Ber.,* **70,2058 (1937).** (b) A Meuwsen and H. Gebhardt, *ibid.,* **68,101 (1935); 69,937 (1936).** (c) T. Whittelsey and C, E. Bradley, U.S. Patent **1559 393 (1926);** *Chem. Abstr.,* **20,126 (1926).** (d) A. R. V. Murthy, *PFOC. Indian Acad. Sci., Sect. A,* **37, 11 (1953);** *Chem. Abstr.,* **47, 12084f (1953).**
-
- **(126)** H. Stamm, *Chem. Ber.,* **68,673 (1935). (127)** M. Goehring, *Chem. Ber.,* **80, 219 (1947).**
- (128) Cyclic thionosulfites (cf. 143) were configurationally stable over the temperature range employed (see ref 121).
(129) G. Glaeson, G. Androes, and M. Calvin. J. Am. Chem. Soc.
- **83, 4357 (1961).**
- **(130)** M. Kobayashi, H. Minato, and K. Shimada, *Int. J. Sulfur Chem.,* **1, 105 (1971).**
- **(131)** (a) H. Kagami and S. Motoki, *J. Org. Chem.,* **42,4139 (1977).** (b) H. Kagami and S. Motoki, *Bull. Chem.* Soc. *Jpn.,* **52,3463 (1979).**
- **(132)** (a) D. **N.** Harpp and K. Steliou, Abstracts of the 8th International Symposium on Sulfur Chemistry,: Portoroz, Yugo-slavia, June **18-23, 1978.** (b) D. **N.** Harpp, K. Steliou, and C. **.J.** Cheer, *J. Chem.* SOC., *Chem. Commun.,* **825 (1980).**
- **(133)** N. L. Allinger, M. J. Hickey, and J. Kao, *J. Am. Chem.* SOC., **98, 2741 (1976).**
- **(134) R.** L. Kuczkowski, *J. Am. Chem.* Soc., **86, 3617 (1964).**
- **(135)** *S.* C. Abrahams, *Acta Crystallogr.,* **8, 661 (1955).**
-
- **(136)** (a) K. G. Naik, *J. Chem.* **SOC., 119, 1231 (1921).** (b) K. **G.** Naik and M. D. Avasare, *ibid.,* **121, 2592 (1922). (137) G.** W. Kutney and I. W. J. Still, *Can. J. Chem.,* **58, 1233 (1980).**
- **(138) G.** W. Kutney and I. W. J. Still, *J. OFg. Chem.,* **46, 4911 (1981)** and loc. cit.
- (139) This compound has been previously prepared from the re-
action of 157 with CH₃OSSOCH₃ and *t*-BuOK.^{121b} See also
G F. Koser, *S.-M*.(Yu) Linden, and Y.-J. Shih, *J. Org. Chem.*,
- **43, 2676 (1978). (140)** M. Bogemann, S. Petersen, 0. E. Schultz, and H. Soll, *Methoden. Org. Chem. (Houben-Weyl), 4th* **Ed. 1952,9, 804 (1952).**
- **(141) E. W. Yeoman,** *J. Chem. Soc.***, 119**, 38 (1921) and loc. cit.; W. P. Bloxam, *J. Chem. Soc.*, **67**, 277 (1895).
- **(142)** H. Mills and P. L. Robinson, *J. Chem.* SOC., **2326 (1928). (143) J.** Dingwall and D. H. Reid, *J. Chem.* Soc., *Chem. Commun.,*
-
- **563 (1968). J.** L. Adelfang, *J. Org. Chem.,* **31, 2389 (1966).** E. **J.** Smutny, W. Turner, E. D. Morgan and R. Robinson, *Tetrahedron,* **23, 3785 (1967).**
- **F.** Boberg, *Justus Liebigs Ann. Chem.,* **679, 118 (1964).** (a) **F.** Boberg, *Angew. Chem.,* **76,575 (1964).** (b) **F.** Boberg,
- *Justus Liebigs Ann. Chem.,* **683, 132 (1965).** R. **F.** C. Brown and I. D. Rae, *Aut. J. Chem.,* **18,1071 (1965).**
- **R. F.** C. Brown, and I. D. Rae; *Aust. J. Chem.,* **17,447 (1964).**
- *G.* Le Coustumer and Y. Mollier, *Bull.* Soc. *Chim. FF.,* **3076 (1970); 2958 (1971);** *C. R. Hebd. Seances Acad. Sci.,* 270c, **433**
- (151) M. Perrier and J. Vialle, *Bull. Soc. Chim. Fr.*, 199, 205 (1979).
- **52)** By analogy with the reactions of some thio compounds (including thioamides, dithiobenzoic acids, and, very recently, thiones) with SCl2¹⁵³ an initial unstable salt (>C=S+-S-
ClCl⁻ or >CCl-S--SCl) might be formed; extrusion of Cl_: from which would yield the reactive thiosulfine **178.**
- 53) (a) E. Campaine, M. Pragnell, and F. Haaf, J. Heterocycl.
Chem., 5, 141 (1968). (b) A. V. El'tsov and V. E. Lopatin, J.
Org. Chem. USSR. (Engl. Transl.), 7, 1319 (1970). (c) M.
Muhlstadt and R. Widera, J. Prakt. Chem. (d) I. W. J. Still, G. W. Kutney, and D. McLean, *J. Org. Chem.,* **47, 555 (1982).**
- 54) (a) A. Senning, *Angew. Chem., Int. Ed. Engl.*, 188, 941 (1979).
(b) A. Senning, "IUPAC Organic Sulfur Chemistry", R. Kh.
Freidlina and A. E. Skorova, Eds., Pergamon Press, Oxford, **1981,** p **151.**
-
- **(155) A.** Dibo, Ph.D. Dissertation, Universite de Caen, **1978. (156)** J. **A. M.** Kuipers, B. H. H. Lammerink, I. W. J. Still, and B.
- Zwaneburg, Synthesis, 295 (1981).
(157) C-P. Klages and J. Voss, Angew. Chem., Int. Ed. Engl. 10,
725 (1977); C. Suarez Contreras, An. Quim., 64, 819 (1968); *Chem. Abstr.* **70, 56896j (1969);** T. Sato, *Radioisotopes,* **23, 1451 (1974).**
- **(158) D.** H. **R.** Barton and M. J. Robson; *J. Chem. SOC., Perkin Trans. I,* **1245 (1974).**
- (159) H. Kagami and S. Motoki, J. Org. Chem., 42, 4139 (1977).
(160) (a) Y. Inagaki, R. Okazaki, and N. Inamoto, *Tetrahedron* Lett., 4575 (1975). (b) Y. Inagaki, R. Okazaki, and N. Inamoto; Bull. Chem. Soc. Jpn., 52, 199
- **(161)** (a) Arylamines, with at least one ortho position unsubsti-tuted, have been reported to react with disulfur dichloride to yield **1,3,2-benzothiazothiolium** chloride derivatives (Herz reaction). cf. **W.** K. Warburton, *Chem. Reu.,* **57,1011 (1957); Q.** E. Thompson; *Q. Rep. Sulfur Chem.,* **5, 245 (1970); P.** Hope and A. Wiles, *J. Chem.* Soc., **1283 (1966).** N-(Thio sulfinyl)amines have been proposed as intermediates in the
- **P.** Schurig; Dresden Technical University, Dissertation A, **1978;** R. Mayer, S. Bleisch, and G. Domschke; *2. Chem.* **18,**
- 323 (1978).

(162) (a) Y. Inagaki, R. Okazaki, and N. Inamoto, *Tetrahedron*
 Lett., 293 (1977). (b) Y. Inagaki, R. Okazaki, and N. Inamoto,
 Bull. Chem. Soc. Jpn., 52, 2002 (1979).
- **(163)** K. A. Hofmann ancfW. Rudorff, "Anorganische Chemie", **20** Auflage, Friedr. Vieweg and Sob, *Braunshweig,* **1969,** p **180.**
- (164) Thionitroso compunds (-N=S) have been reported: W. J. Middleton, *J. Am. Chem.* **SOC., 88,3842 (1966); F.** Wudl and E. T. Zellers, *J. Org. Chem.,* **43, 3211 (1980);** and P. Tavs, *Angew. Chem., Int. Ed. Engl.,* **5, 1048 (1966)** see also ref **162b.**
- **(165)** Yu. **G.** Shermolovich, V. V. Vasil'ev, and L. N. Markovskii, J. *Org. Chem. USSR (Engl. Transl.),* **13, 664 (1977).**
- (166) Alkylamines and monosilylated derivatives react with S_2Cl_2 to give products apparently dimers of N-(thiosulfinyl)amines. Cf.

Also:

Also:
\n
$$
CF_3SO_2N(Sn(CH_3)_3)_2 + S_2Cl_2 \longrightarrow CF_3SO_2-N
$$

\n CF_3SO_2N
\n CH_3J_3Sn
\n $Sn(CH_3)_3$
\n $Sn(CH_3)_3$

(a) L. A. Wiles and Z. S. Ariyan, *Chem. Ind. (London),* **2102 (1962).** (b) R. Appel and M. Montenarh, *Chem. Ber.,* **111,759 (1978).** (c) B. Krebs, M. Hein, M. Diehl, and H. W. Roesky, *Angew. Chem., Int. Ed. Engl.,* **17, 778 (1978).**

- **(1976). (167)** R. Mayer, **E.** Oestreich, and S. Bleisch, *2. Chem.,* **16, 437**
- **(168)** *Y.* Inagaki, R. Okazaki, N. Inamoto, and T. Shimozawa, *Chem. Lett.,* **1217 (1978).**
- (169) K. A. Jensen and N. Hofman-Bang, Justus Liebigs Ann.
Chem., 548, 95 (1941); L. Janelli, U. Lamanna, and H. Lumbroso; Bull. Soc. Chim. Fr., 3626 (1966); G. Kresze and H. Smalla, Chem. Ber., 92, 1024 (1959).
Smalla, C
- 1. Shimozawa, Tudentisa no Kaishaku , Kyorisa Shqip-
pan, Tokyo, 1967.
(a) F. Iwasaki, R. Okazaki, and N. Inamoto; Abstracts of 10th
- **(171)** (a) **F.** Iwasaki, R. Okazaki, and N. Inamoto; Abstracts of 10th Symposium on Structural Organic Chemistry, Oct **1977,** Matsuyama, Japan, **1S18.** (b) F. Iwasaki, *Acta Crystallogr.*
- Sect. \hat{B} , 35, 2099 (1979).

(172) (a) C. Tamura, K. Aiba, S. Sato, T. Hata, S. Morimura, and

T. Yoshioka, Acta Crystallogr. Sect. B, 33, 3918 (1977); S.

Morimura, H. Horiuchi, C. Tamura, and T. Yoshioka, Bull.

Che
- **(173)** C. Tamura, *Yukt Goiei Kagaku Kyokaishi,* **29, 977 (1971);** *Chem. Abstr.,* **76, 58407y (1972).**
- **(174) J. G.** Sime and S. C. Abrahams, *Acta Crystallogr.,* **13, 1 (1960).**
- **(175)** G. Leandri, V. Busetti, G. Valle, and M. Mammi, *J. Chem.* **SOC.,** *Chem. Commun.,* **413 (1970).**
- **(176)** Y. Inagaki, R. Okazaki, N. Inamoto, K. Yamada, and H. Kawazura, *Bull. Chem. Soc. Jpn.*, **52**, 2008 (1979).
- **(177)** Y. Inagaki, R. Okazaki, and N. Inamoto, *Heterocycles,* **9,1613 (1978).**
- **(178)** *T.* Hosogai, **N.** Inamoto, and R. Okazaki; *J. Chem.* Soc. C, **3399 (1971).** \-- . -,-
- **(179)** R.Okazaki, M. Watnabe, Y. Inagaki, and N. Inamoto, *Tetrahedron Lett.,* **3439 (1978).**
- **(180)** Y. Muira, M. Makita, and M. Kinoshita, *Bull. Chem. SOC. Jpn.,* **50, 482 (1977).**
- **(181)** Y. Muira and M. Kinoshita. *Bull. Chem. SOC. Jm.,* **50. 1142 (1977). (182)** Y. Muira, H. Asada, and M. Kinoshita, *Bull. Chem.* **SOC.**
- *Jpn.,* **50, 1855 (1977).**
- (183) R. S. Berry in "Nitrenes", W. Lwowski, Ed., Interscience,
New York, 1970, p 13.
(184) C. Nishijima, N. Kanamura, and K. Kimura, *Bull. Chem.*
Soc. Jpn., 49, 1151 (1976), and loc. cit.
(185) Y. Inagaki, R. Okazaki, T
- (184)
- (185)
- (186)
- **Y.** Inagaki, R. Okazaki, and N. Inamoto, *Chem. Lett.,* **1095 (1978).**
- Structure **237** could not be conclusively identified by spectroscopic and chemical means alone.
- E. Block and J. O'Connor, J. *Am. Chem. SOC.,* **96,3921,3929 (1974),** and **loc.** cit.
- Oxygen migration in S-aryl thiosulfinates has been suggested:
P. Koch, E. Cuiffarin, and A. Fava, J. *Am. Chem. Soc.*, 92, 5971 (1970).
- This **is** the first example of a stable N-substituted sulfimide. Y. Inagaki, T. Hosogai, R. Okazaki, and N. Inamoto, *Bull.*

- *Chem. SOC. Jpn.,* **53, 205 (1980). (193)** Yields were based on consumed starting material and were generally about **50%.**
- Reid. *Can.* J. *Chem.. 55.* **3273 (1977). (194) L.** R. **C.** Barcley, P. G. Khazanie, K. A. H. Adams, and E.
- **(195) M.** Frankle, **S.** Hodson,'B. Packard; and K. Turnbull, un- published results.
- (196) (a) R. Okazaki, K. Inoue, and N. Inamoto, *Tetrahedron Lett.*, 3673 (1979). (b) R. Okazaki, K. Inoue, and N. Inamoto, *Bull.*
Chem. Soc. Jpn., 54, 3541 (1981).
(197) R. Appel and M. Montenarh, *Chem. Ber.*, 111, 7
-